Enhancing Organizational Performance Through KPI-Based Employee Prediction Using the C4.5 and Random Forest Methods

Authors

  • Grasiella Yustika Rezka Talita Kusumaningtyas Magister Teknologi Informasi, Universitas Nasional, Jakarta, Indonesia
  • Agung Triayudi Magister Teknologi Informasi, Universitas Nasional, Jakarta, Indonesia

DOI:

https://doi.org/10.38035/dijemss.v6i4.4502

Keywords:

C4.5, Performance, Organization, Random Forest

Abstract

Employee performance evaluation is a crucial process for organizations in achieving strategic goals. PT Kreatif Dinamika Integrasi currently conducts employee assessments manually using Microsoft Excel, leading to inefficiencies, potential errors, and subjectivity. This study aims to develop a decision support system (DSS) using the C4.5 and Random Forest algorithms to improve accuracy and fairness in performance evaluation. The research adopts a quantitative approach, encompassing problem analysis, literature review, data collection, machine learning model implementation, and result evaluation. The key performance indicators (KPIs) used include discipline, punctuality, skills, appearance, and education, which serve as attributes in the classification process. The C4.5 algorithm constructs a decision tree to identify patterns, while Random Forest, as an ensemble method, enhances classification accuracy and reduces the risk of overfitting. The results indicate that using Random Forest improves evaluation accuracy from 85% to 87.5%. The implementation of this DSS provides a more reliable framework for salary and bonus prediction, minimizes bias, and enhances decision-making quality. Overall, integrating machine learning models into employee performance evaluation significantly improves efficiency and transparency.

References

Aini, N., Arif, M., Agustin, I. T., & Toyibah, Z. B. (2024). Implementasi Algoritma Random Forest untuk Klasifikasi Bidang MSIB di Prodi Pendidikan Informatika. Jurnal Informatika, 11(1), 11–16. https://doi.org/10.31294/inf.v11i1.20637

Anwar Prabu Mangkunegara, A. A. (2010). Manajemen sumber daya manusia perusahaan. PT Remaja Rosdakarya.

Bijalwan, P., Gupta, A., Mendiratta, A., Johri, A., & Asif, M. (2024). Predicting the productivity of municipality workers: A comparison of six machine learning algorithms. Economies, 12(1). https://doi.org/10.3390/economies12010016

Deep Prakash, C., & Verma, S. (2022). A new in-form and role-based deep player performance index for player evaluation in T20 cricket. Decision Analytics Journal, 2. https://doi.org/10.1016/j.dajour.2022.100025

Devia, E. (2023). Penerapan decision tree dengan algoritma C4.5 untuk menentukan rekomendasi kenaikan jabatan karyawan.

Dinisari, M. C. (2019). Microsoft ganjar penghargaan untuk Kreatif Dinamika Integrasi. Bisnis.com. https://teknologi.bisnis.com/read/20191127/84/1175148/microsoft-ganjar-penghargaan-untuk-kreatif-dinamika-integrasi

Dwi Egie, P., Sumardi, H. R., & Nunung, N. (2019). Pengaruh kompensasi dan gaya kepemimpinan terhadap kinerja karyawan di Sekretariat DPRD Kabupaten Indramayu.

Es-Sabery, F., & Hair, A. (2020). A MapReduce C4.5 decision tree algorithm based on fuzzy rule-based system. Fuzzy Information and Engineering, 11(4), 446–473. https://doi.org/10.1080/16168658.2020.1756099

Fitriana, H. L., Feriantono, I., Laily, S. I., & Jakaria, R. B. (2024). Penilaian kinerja karyawan menggunakan Key Performance Indicator (KPI) pada PT. Hilfic. Venus: Jurnal Publikasi Rumpun Ilmu Teknik, 2(4), 333–341. https://doi.org/10.61132/venus.v2i4.448

Galih, & Eriyadi, M. (2022). Perbandingan model NBC, SVM, dan C4.5 dalam mengukur kinerja karyawan berprestasi pasca pandemi Covid-19. Jurnal Informatika, 9(2). http://ejournal.bsi.ac.id/ejurnal/index.php/ji

Gibson, J. L., Ivancevich, J. M., & Donnelly, J. H. (1996). Organization: Perilaku, struktur, proses jilid 1-8/E. (N. Adiarni, Trans.; L. Saputra, Ed.). Binarupa Aksara.

Ignatius, W. (2005). Dasar-dasar ilmu organisasi. Andi. https://elibrary.bsi.ac.id/readbook/205321/dasar-dasar-ilmu-organisasi

Kathirisetty, N., Jadeja, R., Garg, D., & Thakkar, H. K. (2022). On the design of student assessment model based on intelligence quotient using machine learning. IEEE Access, 10, 48733–48746. https://doi.org/10.1109/ACCESS.2022.3171807

Kompascom. (2024). PT Kreatif Dinamika Integrasi raih Microsoft Partner of the Year Indonesia 2024. https://money.kompas.com/read/2024/07/04/205947026/pt-kreatif-dinamika-integrasi-raih-microsoft-partner-of-the-year-indonesia

Kusumaningtyas, G. Y. R. T., & Wahyuddin, M. I. (2022). Implementasi algoritma C4.5 dan simple additive weight untuk menentukan KPI karyawan. Building of Informatics, Technology and Science (BITS, 3)(4), 519–527. https://doi.org/10.47065/bits.v3i4.1356

López-Santiago, J., Md Som, A., Ruiz-Garcia, L., Zubelzu Mínguez, S., & Gómez Villarino, M. T. (2024). Assessment of environmental management performance in wineries: A survey-based analysis to create key performance indicators. Environments - MDPI, 11(7). https://doi.org/10.3390/environments11070139

Lubis, P. I., & Kusumanto, I. (2018). Penilaian kinerja karyawan menggunakan metode Key Performance Indicators (KPI) (Studi kasus: CV. Bunda Bakery Pekanbaru). Jurnal Sains, Teknologi dan Industri, 15(2), 37–45.

Naufal, N. R. A., & Kholik, M. A. (2024). Sistem pendukung keputusan penilaian kinerja karyawan menggunakan algoritma decision tree. https://mail.jurnal.stmik-yadika.ac.id/index.php/spirit/article/view/346/324

Novianti, R. A. (2016). Pengaruh stres kerja terhadap motivasi kerja dan dampaknya terhadap kinerja karyawan di bagian funding officer dan accounting officer PT. Bank Rakyat Indonesia (Persero), Tbk. Cabang Bangkalan, Madura. https://ejournal.unesa.ac.id/index.php/jim/article/view/17872

Ompusunggu, E. S., Nainggolan, A., Sihombing, M. K., Sains, F., & Teknologi, D. (2023). Penentuan kelayakan promosi pegawai menggunakan algoritma random forest classifier dan XGBoost classifier. Jurnal TEKINKOM, 6(2). https://doi.org/10.37600/tekinkom.v6i2.949

Pahlevi, O., & Handrianto, Y. (2023). Implementasi algoritma klasifikasi random forest untuk penilaian kelayakan kredit. Jurnal, 5(1). http://ejournal.bsi.ac.id/ejurnal/index.php/infortech

Rahmayani, S. (2025). SPK seleksi calon karyawan PT Jasa Raharja menggunakan metode kombinasi ARAS dan weighted product. 206–222. https://doi.org/10.59841/saber.v3i1.2228

Robbins, S. P., & Judge, T. A. (2013). Organizational behavior (15th ed.). Pearson Prentice Hall. https://digilib.stekom.ac.id/ebook/view/ORGANIZATIONAL-BEHAVIOR-15TH-EDITION

Rochmat Asyhari, M., Alijoyo, A., & Vernanda, D. (2024). Penerapan algoritma C4.5 dan metode 360° pada sistem informasi penilaian karyawan. Jurnal Teknologi Komputer, 18(1). https://doi.org/10.33365/jtk.v18i1.3215

Surapati, U., & Prasetyo, A. (2022). Penerapan algoritma C4.5 dalam menentukan karyawan terbaik pada Klinik Hosana Jakarta Barat. Jurnal Pendidikan dan Konseling, 4. https://journal.universitaspahlawan.ac.id/index.php/jpdk/article/download/6737/5086/22159

Wibowo, P. D. (2014). Perilaku dalam organisasi. Rajawali Pers.

Witasari, D., & Jumaryadi, Y. (2020). Aplikasi pemilihan karyawan terbaik dengan metode simple additive weighting (Studi kasus Citra Widya Teknik). Teknologi Informatika dan Komputer. https://doi.org/10.24853/justit.10.2.115-122

Yuliana, H., Hendrawan, Iskandar, & Musashi, Y. (2024). Estimating base station traffic and throughput using machine learning based on hourly key performance indicator (KPI) network analysis. IEEE Access, 12, 116285–116301. https://doi.org/10.1109/ACCESS.2024.3447098

Yurtay, Y., et al. (2023). Improvement and implementation of sustainable key performance indicators in supply chain management. IEEE Access, 11, 41913–41927. https://doi.org/10.1109/ACCESS.2023.3271138

Downloads

Published

2025-05-08

How to Cite

Kusumaningtyas, G. Y. R. T. ., & Triayudi, A. . (2025). Enhancing Organizational Performance Through KPI-Based Employee Prediction Using the C4.5 and Random Forest Methods. Dinasti International Journal of Education Management And Social Science, 6(4), 3288–3295. https://doi.org/10.38035/dijemss.v6i4.4502