The Role of Artificial Intelligence in Optimizing Electronic Health Records for Early Detection of Disease
DOI:
https://doi.org/10.38035/dijemss.v6i3.4024Keywords:
Predictive Analytics, Electronic Health Record, Machine LearningAbstract
The Role of Artificial Intelligence in Optimizing Electronic Health Records for Early Detection of Disease is a critical focus area, as AI technologies enhance the ability to analyze vast datasets within EHRs, facilitating timely identification of health risks and improving patient outcomes. By leveraging AI, healthcare providers can streamline data management processes and support more accurate and efficient predictions, ultimately leading to better disease management and resource allocation. This paper emphasizes the importance of integrating artificial intelligence into EHR systems to maximize their potential for early disease detection and improve overall healthcare delivery.
References
Baek, J. W., & Chung, K. (2020). Context Deep Neural Network Model for Predicting Depression Risk Using Multiple Regression. IEEE Access, 8, 18171–18181. https://doi.org/10.1109/ACCESS.2020.2968393
Çelik, A., Yaman, H., Turan, S., Kara, A., Kara, F., Zhu, B., Qu, X., Tao, Y., Zhu, Z., Dhokia, V., Nassehi, A., Newman, S. T., Zheng, L., Neville, A., Gledhill, A., Johnston, D., Zhang, H., Xu, J. J., Wang, G., … Dutta, D. (2018). FUNDAMENTALS OF MACHINE LEARNING FOR PREDICTIVE DATA ANALYTICS. In Journal of Materials Processing Technology (Vol. 1, Nomor 1).
Futoma, J., Morris, J., & Lucas, J. (2015). A comparison of models for predicting early hospital readmissions. Journal of Biomedical Informatics, 56, 229–238. https://doi.org/10.1016/j.jbi.2015.05.016
Ghorbani, R., Ghousi, R., Makui, A., & Atashi, A. (2020). A New Hybrid Predictive Model to Predict the Early Mortality Risk in Intensive Care Units on a Highly Imbalanced Dataset. IEEE Access, 8, 141066–141079. https://doi.org/10.1109/ACCESS.2020.3013320
Goldstein, B. A., Navar, A. M., Pencina, M. J., & Ioannidis, J. P. A. (2017). Opportunities and challenges in developing risk prediction models with electronic health records data: A systematic review. Journal of the American Medical Informatics Association, 24(1), 198–208. https://doi.org/10.1093/jamia/ocw042
Guller, M., & Guller, M. (2015). Big Data Technology Landscape. Big Data Analytics with Spark, Ml, 1–15. https://doi.org/10.1007/978-1-4842-0964-6_1
Hao, Y., Usama, M., Yang, J., Hossain, M. S., & Ghoneim, A. (2019). Recurrent convolutional neural network based multimodal disease risk prediction. Future Generation Computer Systems, 92, 76–83. https://doi.org/10.1016/j.future.2018.09.031
Hauskrecht, M., Batal, I., Valko, M., Visweswaran, S., Cooper, G. F., & Clermont, G. (2013). Outlier detection for patient monitoring and alerting. Journal of Biomedical Informatics, 46(1), 47–55. https://doi.org/10.1016/j.jbi.2012.08.004
Hong, W., Xiong, Z., Zheng, N., & Weng, Y. (2019). A Medical-History-Based Potential Disease Prediction Algorithm. IEEE Access, 7, 131094–131101. https://doi.org/10.1109/ACCESS.2019.2940644
Ismail, W. N., Hassan, M. M., Alsalamah, H. A., & Fortino, G. (2020). CNN-based health model for regular health factors analysis in internet-of-medical things environment. IEEE Access, 8, 52541–52549. https://doi.org/10.1109/ACCESS.2020.2980938
Jamshidi, M., Lalbakhsh, A., Talla, J., Peroutka, Z., Hadjilooei, F., Lalbakhsh, P., Jamshidi, M., Spada, L. La, Mirmozafari, M., Dehghani, M., Sabet, A., Roshani, S., Roshani, S., Bayat-Makou, N., Mohamadzade, B., Malek, Z., Jamshidi, A., Kiani, S., Hashemi-Dezaki, H., & Mohyuddin, W. (2020). Artificial Intelligence and COVID-19: Deep Learning Approaches for Diagnosis and Treatment. IEEE Access, 8(December 2019), 109581–109595. https://doi.org/10.1109/ACCESS.2020.3001973
Jensen, P. B., Jensen, L. J., & Brunak, S. (2012). Mining electronic health records: Towards better research applications and clinical care. Nature Reviews Genetics, 13(6), 395–405. https://doi.org/10.1038/nrg3208
Leventhal, B. (2018). Predictive Analytics for marketers. Kogan Page.
Li, L. F., Wang, X., Hu, W. J., Xiong, N. N., Du, Y. X., & Li, B. S. (2020). Deep Learning in Skin Disease Image Recognition: A Review. IEEE Access, 8, 208264–208280. https://doi.org/10.1109/ACCESS.2020.3037258
Li, M., Liu, Y., Liu, X., Sun, Q., You, X., Yang, H., Luan, Z., Gan, L., Yang, G., & Qian, D. (2021). The Deep Learning Compiler: A Comprehensive Survey. IEEE Transactions on Parallel and Distributed Systems, 32(3), 708–727. https://doi.org/10.1109/TPDS.2020.3030548
Liang, H., Tsui, B. Y., Ni, H., Valentim, C. C. S., Baxter, S. L., Liu, G., Cai, W., Kermany, D. S., Sun, X., Chen, J., He, L., Zhu, J., Tian, P., Shao, H., Zheng, L., Hou, R., Hewett, S., Li, G., Liang, P., … Xia, H. (2019). Evaluation and accurate diagnoses of pediatric diseases using artificial intelligence. Nature Medicine, 25(3), 433–438. https://doi.org/10.1038/s41591-018-0335-9
Meng, L., Dong, D., Li, L., Niu, M., Bai, Y., Wang, M., Qiu, X., Zha, Y., & Tian, J. (2020). A Deep Learning Prognosis Model Help Alert for COVID-19 Patients at High-Risk of Death: A Multi-Center Study. IEEE Journal of Biomedical and Health Informatics, 24(12), 3576–3584. https://doi.org/10.1109/JBHI.2020.3034296
Miotto, R., Li, L., Kidd, B. A., & Dudley, J. T. (2016). Deep Patient: An Unsupervised Representation to Predict the Future of Patients from the Electronic Health Records. Scientific Reports, 6. https://doi.org/10.1038/srep26094
Mohan, S., Thirumalai, C., & Srivastava, G. (2019). Effective heart disease prediction using hybrid machine learning techniques. IEEE Access, 7, 81542–81554. https://doi.org/10.1109/ACCESS.2019.2923707
Nguyen, P., Tran, T., Wickramasinghe, N., & Venkatesh, S. (2017). Deepr: A Convolutional Net for Medical Records. IEEE Journal of Biomedical and Health Informatics, 21(1), 22–30. https://doi.org/10.1109/JBHI.2016.2633963
Sabokrou, M., Fayyaz, M., Fathy, M., Moayed, Z., & Klette, R. (2018). Deep-anomaly: Fully convolutional neural network for fast anomaly detection in crowded scenes. Computer Vision and Image Understanding, 172(January), 88–97. https://doi.org/10.1016/j.cviu.2018.02.006
Sharma, T., & Shah, M. (2021). A comprehensive review of machine learning techniques on diabetes detection. Visual Computing for Industry, Biomedicine, and Art, 4(1). https://doi.org/10.1186/s42492-021-00097-7
Shickel, B., Tighe, P. J., Bihorac, A., & Rashidi, P. (2017). Deep EHR: A survey of recent advances in deep learning techniques for electronic health record (EHR) analysis. arXiv, 22(5), 1589–1604.
Sidey-Gibbons, J. A. M., & Sidey-Gibbons, C. J. (2019). Machine learning in medicine: a practical introduction. BMC Medical Research Methodology, 19(1), 1–18. https://doi.org/10.1186/s12874-019-0681-4
Sohn Dr., S., Wagholikar, K. B., Li, D., Jonnalagadda, S. R., Tao, C., Elayavilli, R. K., & Liu, H. (2013). Comprehensive temporal information detection from clinical text: Medical events, time, and TLINK identification. Journal of the American Medical Informatics Association, 20(5), 836–842. https://doi.org/10.1136/amiajnl-2013-001622
Sun, Y., & Zhang, D. (2019). Diagnosis and Analysis of Diabetic Retinopathy Based on Electronic Health Records. IEEE Access, 7, 86115–86120. https://doi.org/10.1109/ACCESS.2019.2918625
Wang, Q., Wang, S., Wei, B., Chen, W., & Zhang, Y. (2021). Weighted K-NN Classification Method of Bearings Fault Diagnosis with Multi-Dimensional Sensitive Features. IEEE Access, 9, 45428–45440. https://doi.org/10.1109/ACCESS.2021.3066489
Wanyan, T., Vaid, A., De Freitas, J. K., Somani, S., Miotto, R., Nadkarni, G. N., Azad, A., Ding, Y., & Glicksberg, B. S. (2020). Relational Learning Improves Prediction of Mortality in COVID-19 in the Intensive Care Unit. IEEE Transactions on Big Data, December 2020. https://doi.org/10.1109/TBDATA.2020.3048644
Weiskopf, N. G., Hripcsak, G., Swaminathan, S., & Weng, C. (2013). Defining and measuring completeness of electronic health records for secondary use. Journal of Biomedical Informatics, 46(5), 830–836. https://doi.org/10.1016/j.jbi.2013.06.010
Xu, D., Hu, P. J. H., Huang, T. S., Fang, X., & Hsu, C. C. (2020). A deep learning–based, unsupervised method to impute missing values in electronic health records for improved patient management. Journal of Biomedical Informatics, 111(October). https://doi.org/10.1016/j.jbi.2020.103576
Yu, K., & Xie, X. (2020). Predicting Hospital Readmission: A Joint Ensemble-Learning Model. IEEE Journal of Biomedical and Health Informatics, 24(2), 447–456. https://doi.org/10.1109/JBHI.2019.2938995
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Yuda Syahidin, Ade Irma Suryani

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish their manuscripts in this journal agree to the following conditions:
- The copyright on each article belongs to the author(s).
- The author acknowledges that the Dinasti International Journal of Education Management and Social Science (DIJEMSS) has the right to be the first to publish with a Creative Commons Attribution 4.0 International license (Attribution 4.0 International (CC BY 4.0).
- Authors can submit articles separately, arrange for the non-exclusive distribution of manuscripts that have been published in this journal into other versions (e.g., sent to the author's institutional repository, publication into books, etc.), by acknowledging that the manuscript has been published for the first time in the Dinasti International Journal of Education Management and Social Science (DIJEMSS).