lIntegration of NLP and NLU in the Implementation of Chatbot in Asset Management System

Authors

  • Thoha Cahya Ash Shoddiqy Universitas Budi Luhur, Indonesia
  • Akhmad Unggul Priantoro Universitas Budi Luhur, Indonesia
  • Gunawan Pria Utama Universitas Budi Luhur, Indonesia

DOI:

https://doi.org/10.38035/dijemss.v6i2.3716

Keywords:

Chatbot, NLP, NLU, Artificial intelligence, Asset management

Abstract

PT XYZ, a startup in the Information Technology sector, developed an asset management application to digitalize the asset management process for its clients. However, as new features were added, the application became more complex, causing difficulties for new users. PT XYZ responded by introducing a customer service system to assist new users in exploring the company’s services and application features. To improve service efficiency while maintaining quality, the company opted to implement a chatbot. The chatbot was designed to provide automatic and responsive assistance, reducing the load on the customer service team and increasing user satisfaction. The author integrated NLP and NLU in designing the chatbot for PT XYZ using the open-source RASA framework. This framework was chosen for its strong capabilities in natural language processing and understanding conversational context. The NLP and NLU models are used to create a customer service engine in the form of text messages that answer questions specifically related to the use of the asset management application. By leveraging this technology, the chatbot can provide relevant and accurate responses, even when faced with variations in language and complex questions. Based on black box testing, the chatbot successfully recognized the intent behind user queries. The testing was conducted to evaluate how well the chatbot understood and responded to user questions. The results, using a confusion matrix, showed that precision, recall, accuracy, and f1-score all achieved a perfect score of 1.0.

References

A. Rachman, I. Mardhiyah, and M. Jannah, “Implementasi Chatbot FAQ pada Aplikasi Monev Kinerja Direktorat Jenderal Anggaran Menggunakan Framework Rasa Open Source,” KLIK Kaji. Ilm. Inform. dan Komput., vol. 4, no. 1, pp. 62–72, 2023.

A. S. B. Aji, “Membangun Chatbot Layanan Helpdesk Perpajakan KPP Pratama Jakarta Setiabudi Satu,” Sebatik, vol. 26, no. 1, pp. 194–201, 2022.

C. Kidd and B. Saxena, “NLP vs NLU: What’s The Difference?,” bmc.com. Accessed: Dec. 03, 2023. [Online]. Available: https://www.bmc.com/blogs/nlu-vs-nlp-natural-language-understanding-processing/

D. G. S. Ruindungan and A. Jacobus, “Chatbot Development for an Interactive Academic Information Services using the Rasa Open Source Framework,” J. Tek. Elektro dan Komput., vol. 10, no. 1, pp. 61–68, 2021.

D. Normawati and S. A. Prayogi, “Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter,” J. Sains Komput. Inform., vol. 5, no. 2, pp. 697–711, 2021.

E. L. Amalia and D. W. Wibowo, “Rancang Bangun Chatbot Untuk Meningkatkan Performa Bisnis,” J. Ilm. Teknol. Inf. Asia, vol. 13, no. 2, pp. 137–142, 2019.

J. Wiratama, S. A. Sanjaya, and V. I. Sugara, “Rancang Bangun Fitur Chatbot Customer Service Menggunakan Dialogflow,” Komputasi J. Ilm. Ilmu Komput. dan Mat., vol. 19, no. 1, pp. 25–37, 2022.

M. Ahmadi, “Komunikasi Simbolik: Implikasi Penggunaan Chatbot Sebagai Upaya Peningkatan Efektivitas Pelayanan Customer Service,” J-KIs J. Komun. Islam, vol. 4, no. 1, pp. 101–110, 2023.

M. R. Sholahuddin and F. Atqiya, “Sistem Tanya Jawab Konsultasi Shalat Berbasis RASA Natural Language Understanding (NLU),” J. Pendidik. Multimed., vol. 3, no. 2, pp. 93–102, 2021.

M. Rizal et al., “Integrasi Natural Language Processing Dalam Chatbot Marketing ( Studi Kasus Toko Cahaya Fajar ),” J. ISTEK - Inform. Sains dan Teknol., vol. 8, no. 2, pp. 275–283, 2023.

M. Siahaan, C. H. Jasa, K. Anderson, M. V. Rosiana, S. Lim, and W. Yudianto, “Penerapan Artificial Intelligence (AI) Terhadap Seorang Penyandang Disabilitas Tunanetra,” J. Inf. Syst. Technol., vol. 1, no. 2, pp. 186–193, 2020.

Muhtar, “Perkembangan AI Makin Pesat, Jenis Pekerjaan Ini Terancam,” uici - Universitas Insan Cita. Accessed: Dec. 03, 2023. [Online]. Available: https://uici.ac.id/perkembangan-ai-makin-pesat-jenis-pekerjaan-ini-terancam/

Muliyono, “Identifikasi Chatbot dalam Meningkatkan Pelayanan Online Menggunakan Metode Natural Language Processing,” J. Inform. Ekon. Bisnis, vol. 3, no. 4, pp. 142–147, 2021.

N. Afifa, R. E. Saputra, and R. A. Nugrahaeni, “Implementasi NLP Pada Chatbot Layanan Akademik Dengan Algoritma Bert,” e-Proceedings Eng., vol. 10, no. 1, pp. 383–387, 2023.

Prudential, “Menggali Potensi Artificial Intelligence dalam Diagnosa Penyakit: Contoh Aplikasi di Bidang Kesehatan,” prudential.co.id. Accessed: Dec. 03, 2023. [Online]. Available: https://www.prudential.co.id/id/pulse/article/contoh-artificial-intelligence/

R. Khoirunisa, E. Apriliyanto, A. S. S. A., and Kusrini, “Penggunaan Natural Language Processing Pada Chatbot Untuk Media Informasi Pertanian,” IJAI - Indones. J. Appl. Informatics, vol. 4, no. 2, pp. 55–63, 2020.

Rasa, “Introduction to Rasa Open Source & Rasa Pro,” Rasa. Accessed: Feb. 03, 2024. Available: https://rasa.com/docs/rasa/

S. Mulyatun, H. Utama, and A. Mustopa, “Pendekatan Natural Language Processing Pada Aplikasi Chatbot Sebagai Alat Bantu Customer Service,” J. Inf. Syst. Manag., vol. 2, no. 2, pp. 12–17, 2021.

V. J. Ferelestian, B. Susanto, and I. K. D. Senapartha, “Pengembangan Telegram Chatbot Informasi Mahasiswa Menggunakan Wit.ai,” JUTEI - J. Terap. Teknol. Inf., vol. 7, no. 2, pp. 89–97, 2023.

V. R. Prasetyo, N. Benarkah, and V. J. Chrisintha, “Implementasi Natural Language Processing Dalam Pembuatan Chatbot Pada Program Information Technology Universitas Surabaya,” Teknika, vol. 10, no. 2, pp. 114–121, 2021.

Downloads

Published

2024-12-23

How to Cite

Cahya Ash Shoddiqy, T., Unggul Priantoro, A., & Pria Utama, G. (2024). lIntegration of NLP and NLU in the Implementation of Chatbot in Asset Management System. Dinasti International Journal of Education Management And Social Science, 6(2), 1299–1313. https://doi.org/10.38035/dijemss.v6i2.3716