Bank Efficiency in Indonesia: An Analysis through Data Envelopment Analysis (DEA) Approach

Authors

  • Alia Gantina Shiti Mariam Politeknik LP3i Bandung, Indonesia
  • Try Pena Purba Universitas Telkom, Indonesia
  • Fajra Octrina Universitas Telkom, Indonesia

DOI:

https://doi.org/10.38035/dijemss.v6i2.3562

Keywords:

Data Envelopment Analysis (DEA), Efficiency, State-Owned Banks

Abstract

The purpose of this study is to see the efficiency level of banks, and to see which units need to be increased or decreased. This study will look at the efficiency value of government-owned banks from 2017 to 2022 using the Data Envelopment Analysis (DEA) approach. The research findings show that only one bank is consistently efficient during the study period, while other banks need to further improve input utilization to produce optimal output. The existing literature has not discussed much about the in-depth discussion of technical and scale efficiency and how additional changes and adjustments are needed to reach the efficiency limit.

References

Al-Hiyari, A., Al-Mashregy, M. H. H., Mat, N. K. N., & Alekam, J. M. (2013). Factors that affect accounting information system implementation and accounting information quality: A survey in University Utara Malaysia. American Journal of Economics, 3(1), 27–31.

Atina, A. G. (2023). Pengukuran Tingkat Efisiensi Aktivitas Proses Produksi Menggunakan Metode Data Envelopment Analysis (DEA)(Studi Kasus: CV. Mandiri Sejahtera Garment). Universitas Islam Sultan Agung.

Banker, R. D. (1984). Estimating most productive scale size using data envelopment analysis. European Journal of Operational Research, 17(1), 35–44.

Bashayreh, A., & Wadi, R. M. A. (2021). The effect of Fintech on banks’ performance: Jordan case. The Importance of New Technologies and Entrepreneurship in Business Development: In the Context of Economic Diversity in Developing Countries: The Impact of New Technologies and Entrepreneurship on Business Development, 812–821.

Chang, M., Jang, H. B., Li, Y. M., & Kim, D. (2017). The relationship between the efficiency, service quality and customer satisfaction for state-owned commercial Banks in China. Sustainability (Switzerland), 9(12). https://doi.org/10.3390/su9122163

Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429–444.

Dwijayantie, R., & Mulyadi, J. M. V. (2022). Efisiensi Perusahaan Manufaktur dengan Data Envelopment Analysis. JIAFE (Jurnal Ilmiah Akuntansi Fakultas Ekonomi), 8(2), 253–270.

Emrouznejad, A., Marra, M., Yang, G., & Michali, M. (2023). Eco-efficiency considering NetZero and data envelopment analysis: a critical literature review. IMA Journal of Management Mathematics, 34(4), 599–632.

Haabazoka, L. (2019). A study of the effects of technological innovations on the performance of commercial banks in developing countries-A case of the zambian banking industry. The Future of the Global Financial System: Downfall or Harmony 6, 1246–1260.

Hada, S. S., Zhu, N., & Tamang, G. (2017). Frontier Analysis of Nepalese and Chinese Commercial Banks?: DEA Approach. International Journal of Operational Research/Nepal - IJORN, 6(1).

Kamarudin, F., Sufian, F., Nassir, A. M., Anwar, N. A. M., & Hussain, H. I. (2019). Bank efficiency in Malaysia a DEA approach. Journal of Central Banking Theory and Practice, 8(1), 133–162.

Li, Z., Feng, C., & Tang, Y. (2022). Bank efficiency and failure prediction: a nonparametric and dynamic model based on data envelopment analysis. Annals of Operations Research, 315(1), 279–315.

Mulyadi, M., Hatta, H., Umiyati, H., Amane, A. P. O., Santosa, S., Novianti, R., Liniarti, S., Nasution, R. S. A., Kalsum, E. U., & Ismainar, H. (2023). Model-Model Pelatihan dan Pengembangan SDM. Penerbit Widina.

Nugraha, M. (2022). Analisis Determinan Efisiensi Perbankan Dengan Data Envelopoment Analysis: Sebuah Kajian Literatur. Jurnal GICI Jurnal Keuangan Dan Bisnis, 14(1), 66–73.

Octrina, F., & Priatmojo, H. E. (2023). Islamic bank efficiency: an efficiency method with SFA. Jurnal Perspektif Pembiayaan Dan Pembangunan Daerah, 10(6), 379–394.

Owusu Kwateng, K., Osei-Wusu, E. E., & Amanor, K. (2020). Exploring the effect of online banking on bank performance using data envelopment analysis. Benchmarking: An International Journal, 27(1), 137–165.

Simonovic, S. P., & Breach, P. A. (2023). System context: Global change and the food-energy-water nexus. Journal of Water Resources Planning and Management, 149(11), 4023064.

Siregar, M., & Azzahra, K. (2022). The Effect Of Corporate Social Responsibility, Company Size And Capital Intensity On Tax Avoidance. MARGINAL?: Journal Of Management, Accounting, General Finance And International Economic Issues, 1(4). https://doi.org/10.55047/marginal.v1i4.309

Villar, A. S., & Khan, N. (2021). Robotic process automation in banking industry: a case study on Deutsche Bank. Journal of Banking and Financial Technology, 5(1), 71–86.

Yang, J., & Fang, L. (2022). Average lexicographic efficiency decomposition in two-stage data envelopment analysis: an application to China’s regional high-tech innovation systems. Annals of Operations Research, 312(2), 1051–1093.

Yu, Y., Huang, J., & Shao, Y. (2019). The sustainability performance of Chinese banks: A new network data envelopment analysis approach and panel regression. Sustainability (Switzerland), 11(6). https://doi.org/10.3390/su11061622

Zhu, N., Liu, Y., Emrouznejad, A., & Huang, Q. (2017). An allocation Malmquist index with an application in the China securities industry. Operational Research, 17(2). https://doi.org/10.1007/s12351-016-0249-6

Downloads

Published

2024-12-09

How to Cite

Gantina Shiti Mariam, A., Pena Purba, T., & Octrina, F. (2024). Bank Efficiency in Indonesia: An Analysis through Data Envelopment Analysis (DEA) Approach. Dinasti International Journal of Education Management And Social Science, 6(2), 828–841. https://doi.org/10.38035/dijemss.v6i2.3562