Currency Nominal Detection With Tempalate Matching Method To Help Turnanetra
DOI:
https://doi.org/10.38035/dijemss.v5i6.3157Keywords:
Currency Detection, Template Matching, Visually ImpairedAbstract
This research aims to design and implement a currency nominal detection system using the template matching method, how accurate and effective the template matching method is in detecting currency nominal from various lighting conditions and viewpoints and how to detect currency nominal through web-based applications. This research uses descriptive quantitative research with the R&D (Research and Development) approach method. Data collection methods in this research are literature study and observation. The system development method in this research is planning, data collection, needs analysis, system design and system testing. The results showed that the way the application works is that users can use a laptop camera or directly select an image of Rupiah money to detect its nominal value. The application of currency nominal detection with the template matching method to help the visually impaired in this study was built using Visual Studio Code software using the Python programming language. User interface is the appearance of the programme that can be seen, heard or perceived by the user and the commands or mechanisms used by the user to control operations and enter data. It can be concluded that an application has been produced that is built using Visual Studio Code software with the Python programming language to be used in the nominal detection process of rupiah currency banknotes using the template matching method effectively and accurately used and the nominal detection process of rupiah currency banknotes can be done through a webcam or by selecting images of money contained in laptop storage.
References
Abdiansyah, D. (2022). Pemograman Dasar Phyton 3.0 Teori dan Implementasi. Palembang.
Alfita, R., Ibadilah, A. F., & Prianto, A. (2022). Identifikasi Nilai Nominal Uang Kertas Berdasarkan Warna Berbasis Image Processing Menggunakan Metode Template Matching. Jurnal Teknik Elektro Dan Komputer TRIAC, 9(1), 28–32.
Aulia, R. (2024). Mahasiswa Tunanetra (H. Vierdausytha, ed.). Surabaya: Airlangga University Press.
Azindha, F. S., Sutopo, J., Yogyakarta, T., Ring, J., Utara, R., Krajan, M., … Yogyakarta, D. I. (2023). Sistem Deteksi Uang Kertas untuk Penyandang Tunanetra dengan Metode Tempalate Matching. 7, 26958–26965.
Fadjeri, A., Saputra, B. A., Adri Ariyanto, D. K., & Kurniatin, L. (2022). Karakteristik Morfologi Tanaman Selada Menggunakan Pengolahan Citra Digital. Jurnal Ilmiah SINUS, 20(2), 1. https://doi.org/10.30646/sinus.v20i2.601
Fatimah, C., Parinata, D., Efendy, A., & Santika, Y. (2021). Digital Mathematics Learning Companion (Dmlc): Aplikasi Android Guru Pendamping Khusus Matematika Bagi Penyandang Tunanetra Berbasis Suara. Jurnal Ilmiah Matematika Realistik, 2(1), 40–46. https://doi.org/10.33365/ji-mr.v2i1.1068
Harani, N. H. (2022). Penggunaan dan Penjelasan Aplikasi. Kreatif.
Ikromina, F. I., & Ujianto, E. I. H. (2019). Invisible Watermarking Citra Digital Menggunakan Kombinasi Metode Discrete Cosine Transform Dan Discrete Wavelet Transform. JANAPATI?: Jurnal Nasional Pendidikan Teknik Informatika, 8, 261–271.
Prihandoko, M. P. D. (2024). Memahami Konsep dan Implementasi Machine Learning (Efitra, ed.). Jambi.
Rahman, S., & Sahira, U. (2019). Pengenalan Iris Mata Menggunakan Metode Template Matching Correlation. Jurnal Teknologi Informasi, 2(2), 105. https://doi.org/10.36294/jurti.v2i2.424
Ramadani, P., & Mukhaiyar, R. (2022). Tongkat Cerdas Tunanetra Menggunakan Sensor Ultrasonik. JTEIN: Jurnal Teknik Elektro Indonesia, 3(2), 416–424.
Siahaan, M., Jasa, C. H., Anderson, K., Rosiana, M. V., Lim, S., & Yudianto, W. (2020). Penerapan Artificial Intelligence (AI) Terhadap Seorang Penyandang Disabilitas Tunanetra. Journal of Information System and Technology (JOINT), 1(2), 186–193.
Supangkat, D. A., Alibasyah, F. N., Dzulqornain, M. R., Hilal, M., Nashrulloh, M. A. N., & Anggraeny, F. T. (2021). Perbandingan Kombinasi Metode Template Matching Dan Algoritma Feature Matching Pada Pengenalan Mata Uang India. SCAN - Jurnal Teknologi Informasi Dan Komunikasi, 16(3), 47–54. https://doi.org/10.33005/scan.v16i3.2636
Syahputra, R. E. (2019). PERANCANGAN APLIKASI PERBANDINGAN DETEKSI TEPI DALAM CITRA DIGITAL DENGAN METODE EDGE DETECTION LINKING DAN SOBEL. Informatika, Jurnal Pelita, 18(2301–9425), 62–68.
Tamara, D., Anam, M. H., Widari, W. S., Falahudin, A. V., Oktavia, W. Y., Fitri, Z. E., & Arifianto, A. S. (2022). Deteksi Keaslian Uang Kertas Berdasarkan Fitur Gray Level Co-Occurrence Matrix (GLCM) Menggunakan K-Nearest Neighbor. Jurnal Buana Informatika, 13(02), 105–115. https://doi.org/10.24002/jbi.v13i02.5716
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Yana Wulandari, Yusuf Ramadhan Nasution

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish their manuscripts in this journal agree to the following conditions:
- The copyright on each article belongs to the author(s).
- The author acknowledges that the Dinasti International Journal of Education Management and Social Science (DIJEMSS) has the right to be the first to publish with a Creative Commons Attribution 4.0 International license (Attribution 4.0 International (CC BY 4.0).
- Authors can submit articles separately, arrange for the non-exclusive distribution of manuscripts that have been published in this journal into other versions (e.g., sent to the author's institutional repository, publication into books, etc.), by acknowledging that the manuscript has been published for the first time in the Dinasti International Journal of Education Management and Social Science (DIJEMSS).