Open Unemployment Rate Modeling In Indonesia Using Spatial Bayes Regression Analysis

Authors

  • Ni Kadek Lia Cahyani Pramesti Udayana University, Bali, Indonesia
  • Ni Luh Putu Suciptawati Udayana University, Bali, Indonesia
  • I Wayan Sumarjaya Udayana University, Bali, Indonesia

DOI:

https://doi.org/10.38035/dijemss.v5i5.2752

Keywords:

Open unemployment rate, Bayesian, Spatial Autoregressive

Abstract

Unemployment is defined as people over the age of 15 who are looking for or do not have a job. The imbalance between the number of jobs and the number of labor force leads to the potential for spatial labor mobility between villages and cities. Therefore, data on the open unemployment rate (TPT) in Indonesia may have spatial effects. The spatial regression analysis method is a commonly used method to estimate the parameters of spatial econometrics models. However, this method is not good enough to estimate the model parameters when there are many spatial units. To overcome this problem, an alternative Bayesian method can be used. This study uses the Bayesian method approach to the Spatial Autoregressive (SAR) model applied to modeling the open unemployment rate in Indonesia in 2022. The data used is secondary data obtained from the Indonesian Central Bureau of Statistics (BPS) in 2022. The results that have been obtained show that the variable labor force participation rate is significant to the open unemployment rate in Indonesia with an acceptance rate of 0.55.

References

Agustina, M., Abapihi, B., Ngurah Adhi Wibawa, G., Yahya, I., & Oleo, H. (2022). Pemodelan Faktor-Faktor yang Mempengaruhi Tingkat Pengangguran Terbuka di Indonesia dengan Pendekatan Regresi Spasial. Fakultas Mipa Universitas Sam Ratulangi, 56.

Anselin, L. (1988). Spatial Econometrics: Methods and Models. Kluwer Academic Publishers, Dordrecht.

Box, G. E. P., & Tiao, G. C. (1973). Bayesian inference in statistical analysis. International Statistical Review, 43, 242.

Badan Pusat Statistik. (2022).

Elhorst, J. P. (2014). Spatial Panel Data Models: In Handbook of Applied Spatial Analysis (pp. 377–407). Springer Berlin Heidelberg.

Kosfeld, R. (2006). Spatial Econometrics.

Lee,J. & Wong, D, W, S (2001). Statistical Analysis with Arcview GIS. John Wiley and Sons, New York.

Lesage, J. P. (1998). Spatial Econometrics.

LeSage, J., & Kelley Pace, R. (2009). Introduction to Spatial Econometrics.

Mariana. (2013). Pendekatan Regresi Spasial Dalam Pemodelan Tingkat Pengangguran Terbuka. Jurnal Matematika dan Pembelajarannya, 1(1).

Ntzoufras, I. (2008). Bayesian Modeling Using WinBUGS. In Bayesian Modeling Using WinBUGS.

Perobelli, F., & Haddad, E. A. (2003). Brazilian Interregional Trade (1985-1996): an Exploratory Spatial Data Analysis. e18.

Sugito, S., & Ispriyanti, D. (2012). Distribusi Invers Gamma pada Inferensi Bayesian. Media Statistika, 3(2).

Susanto, R., & Pangesti, I. (2021). Pengaruh Inflasi dan Pertumbuhan Ekonomi Terhadap Tingkat Kemiskinan di Indonesia. JABE (Journal of Applied Business and Economic), 7(2).

Soodejani, M. T., Tabatabaei, S. M. & Mahmoudimanesh, M. (2021). Bayesian Statistic Versus Classical Statistic in Survival Analysis: an applicable example. American Journal of Cardiovascular Disease, 11(4), 484-488.

Published

2024-07-11

How to Cite

Pramesti, N. K. L. C., Suciptawati, N. L. P., & Sumarjaya, I. W. . (2024). Open Unemployment Rate Modeling In Indonesia Using Spatial Bayes Regression Analysis. Dinasti International Journal of Education Management And Social Science, 5(5), 1444–1454. https://doi.org/10.38035/dijemss.v5i5.2752