FORECASTING WITH TIME SERIES METHOD AT PT. RSM IN BEKASI - JAWA BARAT

Main Article Content

Fanji Andi Bimantoro
Sugiyono Madelan
Ahmad Badawi Saluy

Abstract

This study aims to determine the most valid forecasting method based on the time series method. This research uses a quantitative descriptive method, the research variable is sales data of MT products belonging to PT. RSM period August 2018 to January 2021. Data processing using Microsoft excel and Minitab 19 software. ABC analysis results show product codes RSM020, RSM021, and RSM017 occupy the three highest ranks in class A by contributing 26.16% sales figures. Based on the forecasting results using various time series methods (linear trend, decomposition, moving average, single exponential smoothing, Holt Method, and Winter Method) it is found that the Winter Method produces the lowest MAPE value, which is below 20%. Product code RSM020 with an alpha value of 0.06; beta 0.09; and 0.07 gamma produces 17.2% MAPE. Product code RSM021 with an alpha value of 0.01; beta 0.01; and 0.01 gamma produces a 15.3% MAPE. Product code RSM017 with an alpha value of 0.01; beta 0.02; and 0.02 gamma produces 18.1% MAPE.

Article Details

Section
Articles

References

Abid, S., Fatima, A., Naheed, S., & Sarwar, A. (2016). Double Exponential Forecasting Model For Dates Production In Pakistan. Pakistan Journal Agriculture Research: Vol. 29 pp. 291-297.

Agustiandi, Doddy, Sugiyono Madelan, and Ahmad Badawi Saluy. (2021). “Quality Control Analysis Using Six Sigma Method to Reduce Post Pin Isolator Riject in Natural Drying Pt Xyz.” International Journal of Innovative Science and Research Technology 6(1):1417–26, ISSN 2456-2165.

Ahmad Fardian Firdaus., Sugiyono Madelan., Ahmad Badawi Saluy.(2021). ”Supplier / Partnership Selection System Analysis Based on Analytic Hierarchy Method Process in Oil and Gas Drilling Project (Case Study: PT. KMI)”. International Journal of Innovative Science and Research Technology,Vol.6, Issu 3,page. 403 -411.
Ahmed, N. K., Atiya, A. F., El Gayar, N., & El-Shishiny, H. (2010). An empirical comparison of machine learning models for time series forecasting. Econometric Reviews: pp.594-621.https://doi.org /10.1080/ 07474938. 2010.481556.

Amalia Utami Dewi., Madelan, Sugiyono., Ahmad Badawi saluy.(2021)” Analysis of the Application of Total Quality Management in Lens Products in PT. XYZ” Scholars Bulletin, Scholars Bulletin. Vol.7, Issu,3. Page, 14-20

Barbosa, N. P., Christo, E. S., & Costa, K. A. (2015). Demand forecasting for production planning in a food company. Journal of Engineering and Applied Sciences: Vol. 10, pp. 131-141.

Bozarth, Cecil C., & Robert B. H. (2016). Introduction to Operations and Supply Chain Management. 4th Edition. Pearson Education Limited. Essex-England.

Chopra, S. & Meindl, P. 2010. Supply chain management: Strategy, planning, and operations. Prentice Hall: New Jersey.

Christie H. K. Pasaribu., Sugiyono Madelan., Ahmad Badawi Saluy.(2021)” Single and Multifactor Productivity Analysis of Manual and Automatic Machines at Powder Coating Company PT. TKM in Bekasi. International Journal of Innovative Science and Research Technology, Vol.6, Issu,2.Page, 518-524.

Heizer, J. & Barry, R. (2015). Operations Management (Manajemen Operasi), ed.11. Diterjemahkan oleh: Dwi anoegrah wati S dan Indra Almahdy, Salemba empat, Jakarta.

Heizer, J., Render, B., & Munson, C. (2017). Operations Management Sustainability and supply Chain Management. 12th Edition. Pearson Education Limited. Essex-England.

Indrasen, Y. S., Rajput, V., Chaware, K. (2018). ABC Analysis: A Literature Review. Journal For Advanced Research In Applied Sciences: Vol. 5, pp. 134-137, Issue 5, May/2018, Issn No: 2394-8442.

Marlina, W. A., Susiana, Erizal N., Ahmad, F. A. (2018). Forecasting technique using time sequence: model penentuan volume produksi Sanjai di UKM Rina Payakumbuh. Jurnal Manajemen: Vol. 9, hal. 187-196, Pages. https://doi.org/187-196. 10.32832/jm-uika.v9i2.1567

Musmirani, Abdussamad, & Sari, A.J. (2015). Peramalan Produksi di PT.XXX dan Peramalan Data Simulasi dengan Metode ARIMA. Skripsi. Fakultas Matematika dan Ilmu Pengetahuan: Universitas Mulawarman.

Mononen, O. (2016). “ Short – Term Sales Forecasting Case Nokian Tyres plc in the US”. Tesis. School of Management. University of Tampere. Finland.

Oni, O. V., & Akanle, Y. O. (2018). Comparison of Exponential Smoothing Models for Forecasting Cassava Production. International Journal of Scientific Research in Mathematical and Statistical Sciences: Volume-5, pp.65-68. https://doi.org/10.26438/ijsrmss/v5i3.6568

Rangkuti, F. 2012. Studi Kelayakan Bisnis & Investasi. Gramedia Pustaka. Utama. Jakarta.

Rodrigues, L. L. F., Oliveira, I. H. I. de, Alexandre, M. F., Castorani, R. R., & Jacubavicius, C. (2016). Stocks management through application of demand forecast methods: a case study. Independent Journal of Management and Production: Vol.7 pp.699-713. https://doi.org/10.14807/ijmp.v7i5.458

Ridhwan, A., Ratnawati, D. E., & Rahayudi, B. (2018). Peramalan Produksi Gula Pasir Menggunakan Fuzzy Time Series dengan Optimasi Algoritma Genetika (Studi Kasus PG Candi Baru Sidoarjo). Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, Vol. 2, No. 8, Agustus 2018, hlm. 2542-2548.

Sauqi, A., & Sagara D. R. (2015). Analisis Faktor-faktor yang Mempengaruhi Penyediaan Barang Dagangan Lokal di Pasar Bondowoso Kabupaten Bondowoso. Jurnal WIGA, Vol. 5 No. 1, Maret 2015, hal 8-17

Sayuti, M. (2014). Aplikasi Perhitungan Metode Peramalan Produksi Pada CV. X. Jurnal Teknovasi, Volume 01, Nomor 1, 2014, 35 – 43.

Seong, B. (2020). Smoothing and forecasting mixed-frequency time series with vector exponential smoothing models. Jounrnal Economic Modelling pp 1-17. https://doi.org/10.1016/j.econmod.2020.06.020.

Sinaga, D., Madelan, S., & Saluy, A. B. Analysis Supply Chain Management Performance Using SCOR Method in Compressor Distributor Company at PT. Pola Petro Development. International Journal of Innovative Science and Research Technology. Volume 6, Issue 2, February – 2021, pp. 91-102

Singh, A. P., Gaur, M. K., KumarKasdekar, D., & Agrawal, S. (2015). A Study of Time Series Model for Forecasting of Boot in Shoe Industry. International Journal of Hybrid Information Technology. https://doi.org/10.14257/ijhit.2015.8.8.13

Sinaga, D., Madelan, S., & Saluy, A. B (2021). Analysis Supply Chain Management Performance Using SCOR Method in Compressor Distributor Company at PT. Pola Petro Development. International Journal of Innovative Science and Research Technology, Volume 6, Issue 2, February – 2021,Page 91-102.

Sinulingga. (2013). Perencanaan dan Pengendalian Produksi, Edisi Pertama. Graha Ilmu. Yogyakarta.

Sommeren, Van, F. (2011). Improving forecast accuracy: Improving the baseline forecast for cheese products by use of statistical forecasting. Tesis. University of Twente

Steinbuks, J. (2019). Assessing the accuracy of electricity production forecasts in developing countries. International Journal of Forecasting Vol. 2 pp. 1-10 https://doi.org/10.1016/j.ijforecast.2019.04.009