

+62 813 8765 4578 (S) 081387654578 (S) https://dinastipub.org/DIJEMSS (S) editor@dinastipub.org (C)

COMPARATIVE ANALYSIS OF MAN POWER, PRODUCTIVITY, AND OUTPUT IN THE SHORT AND LONG CONVEYOR CONVEYOR USING MICRO MOTION (CASE STUDY: PT.EDS MANUFACTURING INDONESIA)

Marisa Dosma Sitanggang

Mercu Buana University, Jakarta, Indonesia

ADTICLE INFORMATION	All store star The starting in a second in the second seco
ARTICLE INFORMATION	Abstract: The thesis is compiled to analyze the ratio
Received: 1 February 2020	of man power, productivity and output between short
Revised: 7 February 2020	and long conveyor conveyor. In addition to analyzing
Issued: 11 February 2020	the conveyor which is better to be applied in PT. EDS
	Manufacturing Indonesia by using micro motions. The
Corresponding author: first author	analysis used by researchers working maps, motion
E-mail:	studies and calculation of standard time obtained from
marisa.tanggang@gmail.com	the data retrieval researchers with methods of micro
	motion (use a stop watch). The sample in this study is
121440 (221	that there are in the final process assy namely setting.
	From the results, it can be calculated that for man
282384	power has the addition of 58% from 7 to 12, to the
	output increase from 23.49 unit be 51.17 units and
U325	poduktivitas takttime increased 9% from 4 units to
	4.41 units and 20% productivity standard time of 3.35
DOI: 10.31933/DIJEMSS	units to 4.2 units.
	Keywords: productivity, output, micro-motion

INTRODUCTION

The results achieved by the final assy output, found the problem inability to achieve production output target set by the company. Therefore, the company is required to make improvement or change activities to increase the efficiency of the company.

Ouput data used is output by two conveyor-type car harness suzuki solio and suzuki ignis where this conveyor has the same characteristics and harness of the same carmaker is suzuki. Aggregate output in 2016 was 28712 harness, 2017 harness as many as 25 817, and 2018 as many as 992 harness. The average achievement of output in 2016 was only 72%, in 2017 by 73% and in 2018 in January and February by 76%.

Table 1.	Total outp	ut short	convevor	is the targe	t and actual	l 2016 unti	il 2018 (H	(rebruary)

	2016			2017			2018					
MONTH	PLAN	ACTUAL	DIFFERENCE OUTPUT	ACHIEVEMENTS	PLAN	ACTUAL	DIFFERENCE OUTPUT	ACHIEVEMENTS	PLAN	ACTUAL	DIFFERENCE OUTPUT	ACHIEVEMENTS
JANUARY	3757	2108	1649	58%	4661	3177	1484	68%	2991	2125	866	71%
FEBRUARY	2310	1545	765	67%	9458	6756	2700	71%	663	537	126	81%
MARCH	12044	9139	2905	76%	6228	4140	2088	66%				
APRIL	6963	4816	2147	69%	8919	6225	2694	70%	8			1
MAY	11818	7920	3898	67%	10017	7672	2345	77%	1			
JUNE	25872	18418	7254	72%	6588	4665	1923	71%	í.	Í		li il
JULY	5360	3692	1668	69%	16543	11589	4954	70%	1			
AUGUST	1605	1290	315	80%	4778	3500	1276	73%	8			2
SEPTEMBER	3373	2761	612	82%	5965	4800	1165	80%	1			
OCTOBER	14653	10872	3781	74%	11260	8742	2518	78%	î.	í í		ji ji
NOVEMBER	9807	6912	2895	70%	5493	4071	1422	74%				
DECEMBER	3384	2581	823	78%	4585	3317	1248	73%	2			

LITERATURE REVIEW

Productivity

According Hatani (2008), in general productivity can be defined as the ratio between the amount of goods and services produced (output) with the amount of resources used (input).

Work Map

According Sutalaksana et al. (2006), work map is a tool that describes the work activities in a systematic and clear. Map can be divided into two major groups based on their activities, namely the maps that are used to analyze the overall work activities and maps are used to analyze the activities of local labor. Group work activities include the whole operation process map, map process flows, process maps and flow charts of the working group. On the other hand, the local work group activities is a map of workers and machines as well as a map of the left hand and right hand.

Motion Studies

According Sitohang and Norita (2015), the study is an analysis of the movement of the body parts of workers in adjusting their work, so that movements are not effective can be reduced or even eliminated, so that would be obtained savings and reduction of working time worker fatigue.

According Astuti and Iftadi (2016), the benefits of the movement study include:

- 1. Improve the ability of workers, due to implementing a good method, using a good tool and stop the unnecessary activities.
- 2. Reduce worker fatigue.
- 3. Reduce labor costs, because the waste in the plant is reduced.

Calculation of time standard

According Wignjosoebroto (2006), there are various ways to measure and set the standard time. Some industries only make time estimates based on historical experience. Timing is done by measuring standard work such as stop watch time study, work sampling, delay ratio study, standard data, and predetermined motion time system.

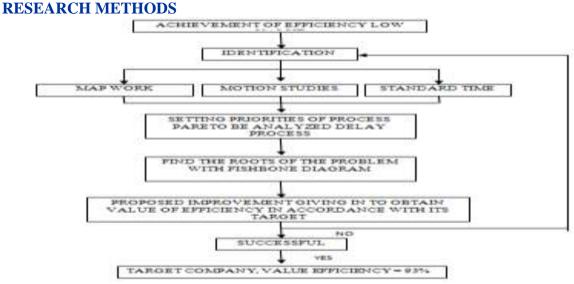


Figure 1. Research Method Framework

FINDINGS AND DISCUSSION

Data retrieval time when the process in regular and long conveyor conveyor collected and processed to be used in research. Then analyze the operator working map obtained from the determination of work processes by drawing harnes operator that has been done by the department of concept and then later researchers will analyze the sequence of the process and there is no wait process between processes. Later analysis of motion studies with sorting operator operator movement if the movement is effective movements or movements ineffective as to the concept of working elements therblig. Further analysis with the standard time measurement cycle time calculation (2.1), the calculation of normal time (2.2), the standard time (2.3). And lastly fishbone diagram analysis of environmental conditions and why-why analysis of 4M (machine, material, method,

Analysis of the operator Conveyor Regular map

	Map of the operator setting regular CV							
NO	WORK	MAP SYMBOL OF						
		WORK						
1	Home position							
2	Take kanban from surishage, save in sao							
	clamp kanban being processed.							
3	Open the rubber on a roll circuit	\bigcirc						
4	Take connector 7289-3740-30, the setting	\bigcirc						
	for part matting Edge 43							
5	Take circuit 480 (0.0 B), setting the matting to the end part 95	\bigcirc						
6	Take connector 7283-4779-30, setting matting to the tip part 42	\bigcirc						
7	Open the rubber rolls							
8	Take matting connector7283-0391-30setting to end part 57	\bigcirc						
9	Take matting connector7123-2312-30setting to end part 60	\bigcirc						
10	Take circuit 469 (Sb 0.3), 462 (Y 0.3)setting to matting part ends 49	\bigcirc						
11	Take the 7283-7699 setting to matting connector end part 73	\bigcirc						
12	Take circuit 461 (Lg 0.3) setting to matting part 77 ends.	\bigcirc						
13	Take matting connector 7383-1571-30 setting to end part 76	\bigcirc						
14	Take circuit 531 (V 0.35), 530 (Y 0.75), 529 (Y 0.75) Setting matting to the tip part 29	\bigcirc						
15	Take circuit 175 (Y 0.35) setting matting to the tip part 72	\bigcirc						

Table 2Map of the operator setting regular CV

16	Take circuit 478 (W 1:25) setting matting to the tip part 95	\bigcirc
17	Take matting connector 7283-1225-40 setting to end part 82	\bigcirc
18	Take circuit 223 (V 0.5) setting to matting part ends 83	\bigcirc
19	Take matting connector 7283-4672-90 setting to end part 49	\bigcirc
20	Take circuit 469 (Sb 0.3), 462 (Y 0.3) Insert the connector to the end of the 49	\bigcirc
21	Take the 7287-7165 setting to matting connector end part 77	\bigcirc
22	Take circuit 459 (0.3 Lg) Insert the end of the connector to the circuit 77 through VO-B	\bigcirc
23	Take circuit 544 (Br 0.35) setting matting to the tip part 29	\bigcirc
24	Make sure that at the time of connector insert circuit to perform 4T (press and press tensile pull)	
25	Make sure all the circuit into the fork and no one setting	
26	Back to the home position	

Analysis motion studies operator *conveyor regular*

Table 3 Analysis motion studies operator setting regular CV

RIGHT HAND			LEFT HAND		
WORK	NAME THER BLIG	SYMBO L THERB LIG	WORK	NAME THERB LIG	SYMB OL THERB LIG
Home position	Reach	RE	Home position	Reach	RE
Take kanban from surishage, save in sao clamp kanban being processed.	Reach	RE	Take kanban from surishage, save in sao clamp kanban being processed.	hold	G
Open the rubber on a roll circuit	release	RL	Open the rubber on a roll circuit	release	RL
Take connector 7289- 3740-30, the setting for part matting Edge 43	Choose	S	Take connector 7289- 3740-30, the setting for part matting Edge 43	assembl e	А
Take circuit 480 (0.0B), setting the matting	Choose	S	Take circuit 480 (0.0 B), setting the matting	assembl e	А

to the end part 95			to the end part 95		
Take connector 7283-4779-30,settingmatting to the tip part42	Choose	S	Take connector7283-4779-30,settingmatting to the tip part42	assembl e	A
Open the rubber rolls	release	RL	Open the rubber rolls	release	RL
Takemattingconnector7283-0391-30 setting to end part57	Choose	S	Take matting connector 7283-0391-30 setting to end part 57	assembl e	A
Takemattingconnector7123-2312-30 setting to end part60	Choose	S	Take matting connector 7123-2312-30 setting to end part 60	assembl e	A
Take circuit 469 (Sb 0.3), 462 (Y 0.3) setting to matting part ends 49	Choose	S	Take circuit 469 (Sb 0.3), 462 (Y 0.3) setting to matting part ends 49	assembl e	A
Take the 7283-7699 setting to matting connector end part 73	Choose	S	Take the 7283-7699 setting to matting connector end part 73	assembl e	A
Take circuit 461 (Lg 0.3) setting to matting part 77 ends.	Choose	S	Take circuit 461 (Lg 0.3) setting to matting part 77 ends.	assembl e	Н
Takemattingconnector7383-1571-30 setting to end part76	Choose	S	Take matting connector 7383-1571-30 setting to end part 76	assembl e	A
Take circuit 531 (V 0.35), 530 (Y 0.75), 529 (Y 0.75) Setting matting to the tip part 29	Choose	S	Take circuit 531 (V 0.35), 530 (Y 0.75), 529 (Y 0.75) Setting (Y 0.75) Setting matting to the tip part 29	assembl e	A
Take circuit 175 (Y0.35) setting mattingto the tip part 72	Choose	S	Take circuit 175 (Y 0.35) setting matting to the tip part 72	assemble	A
Take circuit 478 (W1:25) setting mattingto the tip part 95	Choose	S	Take circuit 478 (W 1:25) setting matting to the tip part 95	assemble	A
Takemattingconnector7283-1225-40 setting to end part82	Choose	S	Take matting connector 7283-1225-40 setting to end part 82	assemble	A
Take circuit 223 (V0.5) setting to matting	Choose	S	Take circuit223 (V0.5) setting to matting	assemble	А

part ends 83			part ends 83		
Takemattingconnector7283-4672-90 setting to end part49	Choose	S	Take matting connector 7283-4672-90 setting to end part 49	assemble	A
Take circuit 469 (Sb 0.3), 462 (Y 0.3) Insert the connector to the end of the 49	Choose assemb le	S A	Take circuit 469 (Sb 0.3), 462 (Y 0.3) Insert the connector to the end of the 49	hold	Н
Take the 7287-7165 setting to matting connector end part 77	Choose	S	Take the 7287-7165 setting to matting connector end part 77	hold	Η
Take circuit 459 (0.3 Lg) Insert the end of the connector to the circuit 77 through VO-B	Choose assemb le	S A	Take circuit 459 (0.3 Lg) Insert the end of the connector to the circuit 77 through VO-B	hold	Η
Take circuit 544 (Br 0.35) setting matting to the tip part 29	Choose	S	Take circuit 544 (Br 0.35) setting matting to the tip part 29	hold	Н
Make sure that at the time of connector insert circuit to perform 4T (press and press tensile pull)	Check	I	Make sure that at the time of connector insert circuit to perform 4T (press and press tensile pull)	Check	S
Make sure all the circuit into the fork and no one setting	Check	Ι	Make sure all the circuit into the fork and no one setting	Check	Ι
Back to the home position	Reach	RE	Back to the home position	Reach	RE

Analysis of the standard time measurement conveyor Regular

A. Value flats

$$\chi = \frac{\Sigma xi}{k} = \frac{117 + 118 + 121 + 119}{4} = 118.75 = 119$$

B. Standard deviation

$$\sigma = \sqrt{\frac{\Sigma(Xj - X)^2}{N - 1}} = \sqrt{\frac{9}{3}} = 1.73$$

C.The standard deviation of the distribution of the average value subgrub

$$\sigma X = \frac{\sigma}{\sqrt{n}} = \frac{1.73}{\sqrt{4}} = 0.86$$

D. limits control of the upper and lower control limits

- BKA = X + 3 σ x = 119 + 3 x 0.86 = 121.58 BKA = X - 3 σ x = 119-3 x 0.86 = 116.42
- E. Test adequacy of the data

N'=.
$$\left(\frac{40\sqrt{N\Sigma X j^2} - (\Sigma X j)^2}{\Sigma X j}\right)^2 = \left(\frac{40\sqrt{4 \times 56415} - (475)^2}{475}\right)^2 = 0.24 = 1$$

F. Factor Adjustment class with Westinghouse engineering

Table 4					
-	stm	nent regular cv Westingl	nouse engineer	ing	
Skills	Aı	verage	0:00		
Effort	Ge	ood effort	0:02		
Events Work	Aı	verage	0:00		
Consistency	Ge	ood	0:01		
AMOUNT			0:03		
Energy released		very light		6%	
attitude to work		Standing on both feet		1%	
labor movement		Normal		0%	
eyestrain		The views continuous	4%		
		focus			
State temperature of t	he	Normal		2%	
workplace					
state of the atmosphere		Enough	2%		
Environmental conditions		Cycle of repetitive wor	1%		
Personal needs		Woman	5%		
Allowances are not spared		May be assisted by oth	4%		
AMOUNT			L	25%	

Source: Authors (2019)

Normal time (Wn) Wn = Ws x P = 119 x (1+0.03) = 122.57 seconds

Standard time (Wb) = Wn x P = 122.57 x (1+0.25) = 153.21 seconds

G. Comparison of current productivity and standard time

Table 5	
Comparison Tacktime and	Standard Time

Productivity	Tacktime	standard time			
Units / hour	128	153.21			
Unit / person	7	7			

From the calculation of the author, the time required by workers on short conveyor to carry out a process of 153.21 seconds from 128 seconds or an increase of 19% over the targeted company due niai adjustment (P) in the calculation of standard time are taken into account and the amount of man power the same (7)

Analysis of standard time measurement Long*conveyor*

	Map of the operator setting Long conveyor	
NO	WORK	MAP
		SYMBOL
		OF WORK
1	Home Position	
2	Take circuit no.091 (B 0.5) insert circuit connector to no.7283-	
	8050-30 to fork U / 58, through the VO-B D10X11 L = 370	\square
	download 7158-5246-60 of wasurenbou spacer and plug the	
	connector 7283- 8050-30 Key spacer (Make 4T press press	<u> </u>
	tensile pull)	
3	Take circuit no.261 (B 0.35) circuit to the connector insert	
	no.7283-1225-40 to fork U / 65, through the VO-B $L = 300$ Key	
	D8X9 spacer (Make 4T press press tensile pull)	
4	Take circuit 257 (B 0.3) insert circuit connector to no.7283-1527	
	to fork U / 84, through the VO-B $L = 360$ Key D8X9 spacer	
	(Make 4T press press tensile pull)	
5	Take circuit 122 (B 0.75), 130 (B 0.75), 252 (B 0.75), 128 (Sb	
	0.75) circuit to the connector insert no.7283-1289-10 to fork U /	\bigcap
	70, through the VO-B D14X15 L = 105 Key spacers (Make 4T	
	press press tensile pull)	
6	Take circuit 248 (B 0.35) circuit to the connector insert no.7283-	
	0392-40 to fork U / 67, through the VO-B D08X09 L = 70 Key	
	spacers (Make 4T press press tensile pull)	
7	Take circuit 374 (B 0.75), insert the connector to the circuit	
	no.7123-3233-30 to fork U / 66, through the VO-B $L = 110$ Key	
	D16X17 spacer (Make 4T press press tensile pull)	\bigcirc
8	Take circuit no.042 (B 0.35) circuit to the connector insert	
	no.7183-7725-40 to fork U / 97, through the VO-B $L = 125$ Key	
	D6X7 spacer (Make 4T press press tensile pull)	
9	Take circuit 438 (B 0.35) circuit to the connector insert no.7183-	
	7725-40 to fork U / 97, through the VO-B L = 125 Key D6X7	
	spacer (Make 4T press press tensile pull)	
10	Take circuit no.436 (B 0.35) circuit to the connector insert	
	no.7183-7725-40 to fork U / 97, through the VO-B $L = 125$ Key	
	D6X7 spacer (Make 4T press press tensile pull)	\cup
11	Take circuit 441 (B 0.35) circuit to the connector insert no.7183-	
	7725-40 to fork U / 97, through the VO-B L = 125 Key D6X7	()
	spacer (Make 4T press press tensile pull)	
12	Check and make sure there is no damage to the connector circuit	
	U / 70 with visible and in touch.	
13	* Back to the home position *	
L		

Table 6						
Map of the operator setting Long conveyor						

5. Analysis motion studies Long conveyor operator

· · · · · · · · · · · · · · · · · · ·		Long conveyor operator settings			
RIGHT HAND	[LEFT HAND		
WORK	NAME THER BLIG	SYMB OL THER BLIG	WORK	NAME THERB LIG	SYMB OL THERB LIG
Home Position	Reach	RE	Home Position	Reach	RE
Take circuit no.091 (B 0.5) insert circuit connector to no.7283- 8050-30 to fork U / 58, through the VO-B D10X11 L = 370 download 7158-5246-60 of wasurenbou spacer and plug the connector 7283- 8050-30 Key spacer (Make 4T press press tensile pull)	assembl e	S A	Take circuit no.091 (B 0.5) insert circuit connector to no.7283- 8050-30 to fork U / 58, through the VO-B D10X11 L = 370 download 7158-5246- 60 of wasurenbou spacer and plug the connector 7283- 8050- 30 Key spacer (Make 4T press press tensile pull)	hold	Η
Take circuit no.261 (B 0.35) circuit to the connector insert no.7283-1225-40 to fork U / 65, through the VO- B L = 300 Key D8X9 spacer (Make 4T press press tensile pull)	Choose assembl e	S A	Take circuit no.261 (B 0.35) circuit to the connector insert no.7283-1225-40 to fork U / 65, through the VO-B L = 300 Key D8X9 spacer (Make 4T press press tensile pull)	hold	Η
Take circuit 257 (B 0.3) insert circuit connector to no.7283-1527 to fork U / 84, through the VO- B L = 360 Key D8X9 spacer (Make 4T press press tensile pull)	assembl e	S A	Take circuit 257 (B 0.3) insert circuit connector to no.7283-1527 to fork U / 84, through the VO- B L = 360 Key D8X9 spacer (Make 4T press press tensile pull)	hold	Н
Take circuit 122 (B 0.75), 130 (B 0.75), 252 (B 0.75), 128 (Sb 0.75) circuit to the connector insert no.7283-1289-10 to fork U / 70, through the VO-B D14X15 L = 105 Key spacers (Make 4T press press tensile pull)	Choose assembl e	S A	Take circuit 122 (B 0.75), 130 (B 0.75), 252 (B 0.75), 128 (Sb 0.75) circuit to the connector insert no.7283-1289-10 to fork U / 70, through the VO-B D14X15 L = 105 Key spacers (Make 4T press press tensile pull)	hold	Н

Table 7
Analysis motion studies Long conveyor operator settings

Take circuit 248 (B 0.35)	Choose	S	Take circuit 248 (B	hold	Н
circuit to the connector	assembl	А	0.35) circuit to the		
insert no.7283-0392-40	e		connector insert		
to fork U / 67, through			no.7283-0392-40 to		
the VO-B D08X09 L =			fork U / 67, through the		
70 Key spacers (Make			VO-B D08X09 L = 70		
4T press press tensile			Key spacers (Make 4T		
pull)			press press tensile pull)		
Take circuit 374 (B	Choose	S	Take circuit 374 (B	hold	Н
· · · · · · · · · · · · · · · · · · ·			`	noid	П
0.75), insert the	assembl	А	0.75), insert the		
connector to the circuit	e		connector to the circuit		
no.7123-3233-30 to fork			no.7123-3233-30 to		
U / 66, through the VO-			fork U / 66, through the		
B L = 110 Key D16X17			VO-B L = 110 Key		
spacer (Make 4T press			D16X17 spacer (Make		
press tensile pull)			4T press press tensile		
			pull)		
Take circuit no.042 (B	Choose	S	Take circuit no.042 (B	hold	Н
0.35) circuit to the	assembl	А	0.35) circuit to the		
connector insert	e		connector insert		
no.7183-7725-40 to fork			no.7183-7725-40 to		
U / 97, through the VO-			fork U / 97, through the		
B L = 125 Key D6X7			VO-B L = 125 Key		
spacer (Make 4T press			D6X7 spacer (Make 4T		
press tensile pull)			press press tensile pull)		
Take circuit 438 (B 0.35)	Choose	S	Take circuit 438 (B	hold	Н
circuit to the connector	assembl	А	0.35) circuit to the		
insert no.7183-7725-40	e		connector insert		
to fork U / 97, through	-		no.7183-7725-40 to		
the VO-B L = 125 Key			fork U / 97, through the		
D6X7 spacer (Make 4T			VO-B $L = 125$ Key		
press press tensile pull)			D6X7 spacer (Make 4T)		
press press tensite puil)			_		
Take circuit no.436 (B	Choose	S	press press tensile pull) Take circuit no.436 (B	hold	Н
			0.35) circuit to the	noid	11
0.35) circuit to the	assembl	А	/		
connector insert	e		connector insert		
no.7183-7725-40 to fork			no.7183-7725-40 to		
U / 97, through the VO-			fork U / 97, through the		
B L = 125 Key D6X7			VO-B L = 125 Key		
spacer (Make 4T press			D6X7 spacer (Make 4T		
press tensile pull)			press press tensile pull)		
Take circuit 441 (B 0.35)	Choose	S	Take circuit 441 (B	hold	Н
circuit to the connector	assembl	А	0.35) circuit to the		
insert no.7183-7725-40	e		connector insert		
to fork U / 97, through			no.7183-7725-40 to		
the VO-B $L = 125$ Key			fork U / 97, through the		
D6X7 spacer (Make 4T			VO-B L = 125 Key		
press press tensile pull)			D6X7 spacer (Make 4T		
1 I I I I I I I I I I I I I I I I I I I	1		T		

			press press tensile pull)		
Check and make sure	Check	Ι	Check and make sure	Check	Ι
there is no damage to the			there is no damage to		
connector circuit U / 70			the connector circuit U /		
with visible and in touch.			70 with visible and in		
			touch.		
* Back to the home	Reach	RE	* Back to the home	Reach	RE
position *			position *		

Analysis standard time measurement Long Conveyor

A. the average value

$$\chi = \frac{\Sigma xi}{k} = \frac{55 + 59 + 56 + 58}{4} = 57 \ detik$$

B. Standard deviation

$$\sigma = \sqrt{\frac{\Sigma(Xj - X)^2}{N - 1}} = \sqrt{\frac{10}{3}} = 1.82$$

C.The standard deviation of the distribution of the average value subgrub

$$\sigma X = \frac{\sigma}{\sqrt{n}} = \frac{1.82}{\sqrt{4}} = 0.91$$

D. limits control of the upper and lower control limits

BKA = X + 3 σ x = 57 + 3 x 0.91 = 59.73

BKA = X - 3 $\sigma x = 57-3 \times 0.91 = 54.27$

E. Test adequacy of the data

$$N' = \left(\frac{\frac{40\sqrt{N\Sigma X j^2} - (\Sigma X j)^2}{\Sigma X j}}{\Sigma X j}\right)^2 = \left(\frac{\frac{40\sqrt{4 \times 13006} - (228)^2}{228}}{228}\right)^2 = 1.23 = 1$$

Class F. Adjustment Factor with Westinghouse engineering

Table 8

Value Adjustment with Westinghouse engineering Long conveyor

Skills	Average	0:00		
Effort	Good effort	0:02		
Events Work	Average	0:00		
Consistency	Average	0:00		
AMOUNT		0:02		
Energy released	very light		6%	
attitude to work	Standing on both feet		1%	
labor movement	Normal	0%		
eyestrain	The views continuou	2%		
	focus turns			
State temperature of th	ne Normal	Normal		

workplace		
state of the atmosphere	Enough	2%
Environmental conditions	Cycle of repetitive work	1%
Personal needs	Woman	5%
Allowances are not spared	May be assisted by other operators	2%
AMOUNT		21%

Normal time (Wn) = Ws x P = 57 x (1+0.02) = 58.14 sec

Standard time (Wb) = Wn x P = 58.14 x (1+0.21) = 70.34 sec

G. Comparison of current productivity and standard time

Table 9

Comparison Tacktime and Standard Time

Productivity	Tacktime	standard time
Units / hour	68	70.34
Unit / person	12	12

From the calculation of the author, the time required by the worker on Long conveyor in performing a process of 70.34 seconds from 68 seconds or an increase of 3% over the targeted company due niai adjustment (P) in the calculation of standard time are taken into account and the amount of man power the same (7)

7. Comparison of Productivity and Output

A. Conveyor Regular

Productivity is not time $=\frac{output}{input} = \frac{28}{7} = 4$ unit/jam

output =
$$\frac{\text{Jumlah waktu yang tersedia}}{\text{waktu baku}} = \frac{3600}{153.21} = 23.49$$
 unit

Productivity standard time $=\frac{output}{input} = \frac{23.49}{7} = 3.35$ unit/jam

B. Longconveyor

Productivity is not time $=\frac{output}{input} = \frac{53}{12} = 4.41$ unit/jam

output = $\frac{\text{Jumlah waktu yang tersedia}}{\text{waktu baku}} = \frac{3600}{70.34} = 51.17$ unit

Productivity standard time = $\frac{output}{input} = \frac{51.17}{12} = 4.2$ unit/jam

Calculation resulting from the increase in productivity of between short conveyor into a long conveyor is taktime 9%, 54% and productivity output standard time 20%

CONCLUSION AND SUGESTION

Conclusions

1. The comparative study man power, productivity, and output in the short and long conveyor conveyor is for man power has the addition of 58% from 7 to 12 for the output has increased from 23.49 unit be 51.17 units and to poduktivitas takttime increased 9% from 4 units to 4:41 units and 20% productivity standard time of 3:35 units to 4.2 units

2. According to the author's calculations using the micro-motions, longconveyor better to be applied in PT.EDS Manufacturing Indonesia by considering the amount of man power, output, and productivity

Suggestions

1. Workers perform effective movement appropriate to use both hands to ease the process

2. The Company considers the standard time obtained in this study, because the calculation results higher than when using standard takt time as the completion of the product.

3. It should be further research on the time standard in all production processes in the process of setting by incorporating elements of the workload on each production process

REFERENCE

Azizan Mohamad (2017). Analysis of Time and Mootion Study using micromotion study in increasing the productivity of SMEs VARIOUS GLASS WORKS. Thesis. Industrial Engineering. Muhammadiyah Surakarta university. Surakarta

Hatani, La. (2008). Operational Management. Haluoleo University. Kendari.

Kusumawardhani RW. (2018). Analysis of Factors Affecting Time and Labor Productivity in Production Process Candied Carica CV Yuasa Food. Thesis. Management Bogor Agricultural University, Bogor.

Sutalaksana, Iftikar Z., et al. (2006). Mechanical System Design Works. ITB. Bandung.

- Rahmawati, Noni Tri. (2017). Planning work measurement in determining the standard time by using time study in order to increase labor productivity in the oil pump division OT. Bukaka Engineering. Thesis. Economy. Pakuan University. Bogor.
- Widyawati, Yunita. (2018). Motion studies, standard time, and the productivity of workers in the production process of a shock absorber. Thesis. Management Bogor Agricultural University. Bekasi.
- Wijaya A, Andrijanto. (2014). System Repair Work To Improve Production Efficiency Time PT. Berdikari Metal Engineering in the Department of Press. https://www.google.com/search?hl=in&source=androidbrowsertype&qjurna 1 + wijaya + and + Andrijanto & gws_rd = ssl. (Accessed on June 1, 2019)
- Yamit Z. (2002). Quality Management Products and Services. First Edition. Ekonisia. Yogyakarta