Accuracy Analysis of Financial Distress Prediction Models for Companies on the IDX Watchlist Board in 2020-2022 Period
DOI:
https://doi.org/10.38035/dijefa.v4i6.2151Keywords:
Financial Distress, Watchlist Board IDX, Altman, Grover, Zmijewski, SpringateAbstract
Abstrak: Tujuan penelitian adalah menguji tingkat keakuratan model prediksi financial distress Altman, Grover, Zmijewski, dan Springate, menggunakan data keuangan perusahaan yang masuk kriteria 5 atau 8 di Papan Pemantauan Khusus BEI pada periode 2020- 2022. Penelitian ini menggunakan metode kuantitatif dengan teknis analisis deskriptif. Pengujian data menggunakan uji Kruskal Wallis One Way Anova karena terdapat lebih dari dua model prediksi yang dibandingkan, kemudian data tidak berdistribusi normal. Sebanyak 44 sampel yang dipilih menggunakan teknik puposive diambil dari 55 populasi emiten yang masuk dalam Papan Pemantauan Khusus BEI. Hasil penelitian menunjukkan bahwa tidak terdapat perbedaan yang signifikan antara akurasi model Altman, Grover, Zmijewski, dan Springate. Ditunjukkan dari hasil akurasi berdasarkan jumlah prediksi benar dari masing-masing model, Zmijewski merupakan model paling akurat dengan tingkat akurasi 67%, disusul Altman 65%, Grover 65%, dan terendah Springate 60%
Abstract: The research aims to examine the accuracy level of the Altman, Grover, Zmijewski, and Springate financial distress prediction models, to determine the most accurate financial distress prediction model in analyzing companies on the IDX Watchlist Board criteria 5 or 8 between 2020 and 2022. This study employs a quantitative method with descriptive analytical techniques. Data testing utilizes the Kruskal-Wallis One-Way ANOVA test due to the comparison of more than two prediction models and the non-normal distribution of the data. A total of 44 samples, purposively selected from the population of 55 listed issuers within the DPK-BEI, were used. The research findings reveal no significant differences in the accuracy among the Altman, Grover, Zmijewski, and Springate models. This is evidenced by the accuracy results based on the number of correct predictions from each model. Zmijewski emerges as the most accurate model with a 67% accuracy rate, followed by Altman and Grover at 65% each, and Springate with the lowest accuracy at 60%.
References
Fauzi, S. E., Sudjono, & Badawi, A. (2021). Comparative Analysis of Financial Sustainability Using the Altman Z-Score, Springate, Zmijewski and Grover Models for Companies Listed at Indonesia Stock Exchange Sub-Sector Telecommunication Period 2014 – 2019. Journal of Economics and Business, 4(1). https://doi.org/10.31014/aior.1992.04.01.321
Indrawan, A., & Gusmarani, Z. (2023). ANALISIS PENGGUNAAN METODE ALTMAN Z-SCORE, ZMIJEWSKI, GROVER, SPRINGATE DAN TAFFLER DALAM MEMPREDIKSI FINANCIAL DISTRESS (STUDI EMPIRIS PADA PERUSAHAAN PERHOTELAN YANG TERDAFTAR DI BURSA EFEK INDONESIA 2021-2022). Kemperensi Ilmuan Akuntansi, 1–12.
Panjaitan, M., Sagala, P. N. B., Napitupulu, H. M., & ... (2022). Effect of Current Ratio, Debt to Equity Ratio, Return on Equity Ratio, and Net Profit Margin Ratio on Financial Distress Conditions in Hotel, Restaurant, and Tourism Sub-Sektor Companies Listed on the Indonesia Stock Exchange for teh 2017-2020 Period. Budapest International Research and Cities Institute Journal (BIRCI-Journal), 5(1), 7756–7762. https://bircu-journal.com/index.php/birci/article/view/4518
Platt, H. D., & Platt, M. B. (2002). Predicting corporate financial distress: Reflections on choice-based sample bias. Journal of Economics and Finance, 26(2), 184–199. https://doi.org/10.1007/bf02755985
Pratama, H., & Mulyana, B. (2020). PREDICTION OF FINANCIAL DISTRESS IN THE AUTOMOTIVE COMPONENT INDUSTRY: AN APPLICATION OF ALTMAN, SPRINGATE, OHLSON, AND ZMIJEWSKI MODELS. Dinasti International Journal of Economics, Finance, & Accounting, 1(4), 358–372. https://doi.org/10.38035/DIJEFA
Pratiwi, M. N., & Wiweko, H. (2022). Perbandingan Metode Altman Z-Score, Grover, Springate, dan Zmijewski dalam Memprediksi Financial Distress pada Perusahaan Sektor Pertanian yang Terdaftar Di Bursa Efek Indonesia. E-Journal Field of Economics, Business and Entrepreneurship, 1(1), 98–107. https://doi.org/10.23960/efebe.v1i1.24
Rosa, Y. Del, & Putra, S. E. (2023). Model Approach , Springate And Zmijweskiin Automotif And Components Manufacturing Companies E Listed On The Idx In 2016 – 2020. 36(2), 401–406.
Salamah, S. N. (2023). Financial Management Strategies to Improve Business Performance. Journal of Contemporary Administration and Management (ADMAN), 1(1), 9–12. https://doi.org/10.61100/adman.v1i1.3
Salim, M. N., & Ismudjoko, D. (2021). An Analysis of Financial Distress Accuracy Models in Indonesia Coal Mining Industry: An Altman, Springate, Zmijewski, Ohlson and Grover Approaches. Journal of Economics, Finance and Accounting Studies, 3(2), 01–12. https://doi.org/10.32996/jefas.2021.3.2.1
Spence, M. (1973). Job Market Signalling. The Quarterly Journal of Economics, 87(3).
Supitriyani, Astuti, & Azwar, K. (2022). Implementation of Springate, Altman, Grover and Zmijewski Models in Measuring Financial Distress. International Journal of Trends in Accounting Research, 3(1), 1–8. https://journal.adaindonesia.or.id/index.php/ijtar/index
Suwandi. (2022). Penyebab Ekuitas Negatif: Uji Signifikansi Pada Laba Bersih dan Nilai Utang. AKUA: Jurnal Akuntansi Dan Keuangan, 1(2), 216–225. https://doi.org/10.54259/akua.v1i2.786
Utami, D. A., & Mahastanti, L. A. (2022). Perbandingan Tingkat Akurasi Model Prediksi Financial Distress Pada Perusahaan Sektor Property dan Real Estate. AFRE Accounting and Financial Review, 5(1), 50–63. https://doi.org/http;//doi.org/10.26905
Yesildas, E. (2019). PERFORMANCES OF FINANCIAL DISTRESS METHODS IN SELECTING PORTFOLIOS ON LISTED ON BIST100 MANUFACTURING FIRMS BETWEEN 2017-2019 Ertan YE??LDA? 1. Düzce Üniversitesi Lisansüstü E?itim Enstitüsü ??letme Anabilim Dal.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Erdina Renaganis Anastasia, Fahrul Riza
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish their manuscripts in this journal agree to the following conditions:
- The copyright on each article belongs to the author(s).
- The author acknowledges that the Dinasti International Journal of Economics, Finance & Accounting (DIJEFA) has the right to be the first to publish with a Creative Commons Attribution 4.0 International license (Attribution 4.0 International (CC BY 4.0).
- Authors can submit articles separately, arrange for the non-exclusive distribution of manuscripts that have been published in this journal into other versions (e.g., sent to the author's institutional repository, publication into books, etc.), by acknowledging that the manuscript has been published for the first time in the Dinasti International Journal of Economics, Finance & Accounting (DIJEFA).