

Analysis of Development and Arrangement of Rapid Transit Bus in Public Transport Planning in Gorontalo City

Jhon Rindu Nainggolan¹, L Denny Siahaan², Adenan Suhalis³

¹ Institut Transportasi dan Logistik Trisakti, Jakarta, Indonesia, email. jhonrindunainggolan@gmail.com

² Institut Transportasi dan Logistik Trisakti, Jakarta, Indonesia

³ Institut Transportasi dan Logistik Trisakti, Jakarta, Indonesia

Corresponding Author: jhonrindunainggolan@gmail.com

Abstract: System transportation in particular field transport common in the city of gorontalo, is not optimal, thing This can be seen from the characteristics of people who prefer to use bentor (motor tricycles) in carrying out their daily activities compared to using public transportation. For example, the Trans Hulonthalangi BRT (Bus Rapid Transit) has not been used optimally, as well as other public transportation, because object to be researched or data source very large with cover Cluster Sampling (Sampling Area). Sampling technique area, often used two Step that is first determine the sample area, second determine the people in the area that by sampling too, then n study this using Modeling Techniques Transportation Four Steps (four-step model), and methods collection in the form of primary data network map Street as well as transportation data general, and second secondary data collection with past survey method cross transport road. Could concluded results study this that development and arrangement bus rapid transit in planning transport general in the city of Gorontalo requires 4 (four) corridors with average bus speed 40 Km/Hr: Corridor I long route 20.2 km (PP) requires 9 vehicles with time travel 52.9 minutes, has a headway of 6 minutes and a frequency of 11 vehicles / hour. Corridor II long 9.3 km (PP) route requires 5 vehicles with time travel 26.5 minutes, has a headway of 6 minutes and a frequency of 11 vehicles / hour. Corridor III length the 16 km (PP) route also requires 5 vehicles with time travel 27.6 minutes, has a headway of 8 minutes and a frequency of 8 vehicles / hour. Corridor III length the 16 km (PP) route also requires 5 vehicles with time travel 27.6 minutes, has a headway of 8 minutes and a frequency of 8 vehicles / hour. Corridor long IV the 40 km (PP) route also requires 11 vehicles with time travel 74.8 minutes, has a headway of 6 minutes and a frequency of 11 vehicles / hour.

Keyword: Development and Arrangement, Transport General Bus Rapid Transit (BRT)

INTRODUCTION

The development of a city cannot be separated from the performance of the transportation system. As the capital of Gorontalo province, the city of Gorontalo has grown and developed rapidly, both physically and non-physically due to the increase in population, economic, social

and cultural activities. In its interrelated relationship, transportation system planning is an inseparable part of general city planning. The transportation system, especially in the field of public transportation in the city of Gorontalo, is not yet optimal. This can be seen from the characteristics of people who prefer to use bentor (motorized rickshaws) to carry out their daily activities rather than using public transportation. For example, the Trans Hulontalangi BRT (Bus Rapid Transit) has not been utilized optimally, nor has other public transportation. Basic data and information are needed to improve the performance of the transportation system in Gorontalo City.

Good urban planning will of course increase the productivity of the region. The transportation system must run optimally to support the movement of people and goods which ultimately leads to improving the economy of a city.

Gorontalo City as a system, development depends on its supporting facilities. One of them is the availability of reliable transportation facilities. If transportation facilities experience disruption and do not function as they should, all activities in the city will experience obstacles. Because the development of Gorontalo City is in line with population growth, this requires the availability of all transportation facilities according to needs. The number of people traveling in the future can be observed by: (1). Know the basic characteristics of travel movements that occur in a city. (2). Analyze the development of passenger transportation in the city which covers various aspects of people's lives, this is related to the needs and characteristics of travel. (3). Forecast the number of trips people make based on population growth rates, number of vehicle owners, and population income.

Analyzing and modeling complete transportation systems requires very complex data. This data can be obtained in the form of secondary data or primary data. Primary data can be obtained from field surveys, namely household interview surveys (Home Interview Survey) and transportation surveys. Based on the background above, the author is interested in conducting a research entitled "Analysis of the Development and Arrangement of Bus Rapid Transit in Public Transport Planning in Gorontalo City.

Cities in Indonesia, including the city of Gorontalo, have almost the same characteristics of transportation problems. The increase in travel needs resulting from increasing economic growth and social activity in society is not supported by adequate transportation infrastructure. The development of road construction is not comparable with the development of vehicle ownership. As a result, traffic jams occur at many points and corridors. The public transport system developed in each city also has the same tendency, namely developing uncontrollably, including small capacity city transport, less than 12 passengers. The large number of smallcapacity public transportation, combined with the low behavior and discipline of drivers and passengers, is a dominant contributor to congestion and disorder. Staged public transport planning is essential in line with the increase in the population of a city, including (1). In the initial stages, a city needs to at least organize its public transportation system by creating main routes served by city buses and branch routes or branch routes served by microbuses or smallcapacity public transportation (2). In a more organized development, it is necessary to study the possibility of implementing road-based mass public transportation, often called Bus Rapid Transit (BRT). (3). As the number of passengers grows, the next stage is to look at the possibility of using rail-based mass public transportation, both above ground and underground (subway). The traffic development of a city can be measured by the volume of traffic crossing the roads in the city. The choice of modes (small bus, medium bus, small bus, bus on a special route (busway), light rail train (LRT), or heavy rail train (MRT)) that needs to be prepared by the city government needs to be adjusted to the level of travel demand on the section - that section of road

METHOD

Population, the total population is 200 objects, from 4 survey techniques 50 each, the population in this study is the community, bentor drivers, and public transport drivers in the city of Gorontalo who are traveling and who will be traveling. The survey in question is: (1) Public Transport Survey, (2) Household Interview Survey, (3) Bentor Survey, (4) Stated Preference Survey

According to (Sugiyono, 2018), (Susanto et al., 2024) The sampling technique used in this research is Probability Sampling, because the objects to be studied or data sources are very broad, including Cluster Sampling. This area sampling technique is often used in two stages, namely: (1) Determine regional samples, (2) Determine the people in that area by sampling too, (3) The number of samples taken according to requirements was 150.

Secondary Data Collection Method, This method is used to collect secondary data related to traffic and road transportation problems from several government and private agencies, some of which are as follows: Gorontalo City Transportation Department. The data collected is maps and data on public transport route networks, Road network maps, and data. Gorontalo City BAPPEDA, Land use map, Map of Gorontalo City Administrative Area, RUTR and RUTRK, Gorontalo City Police The data obtained is data about accidents. Central Bureau of Statistics, The data obtained is Gorontalo City data in figures, Gorontalo City Public Works Department, The data obtained is data about the road network, Gorontalo City Population, and Civil Registration Service. Data on the Population of Gorontalo City, Gorontalo City Transportation Department, Gorontalo City Local Transportation Level (TATRALOK).

Primary Data Collection Method: This method is used to collect primary data through direct observation or surveys in the field. The surveys carried out are: Transportation Planning Sector, Household Interview Survey, The aim is to find out the pattern of travel or movement during 1 (one) day, to know the distribution of trips made by residents from the origin zone to the destination zone, to know the type of transportation mode used to make the trip, to know the level of vehicle ownership for each family or resident, and to know the roads the road or route used to travel. Road Side Interview Survey The aim is to determine traffic movement patterns originating from external zones to external zones, internal zones to external zones, and vice versa. Field of Traffic Engineering (Traffic Engineering), Classified Traffic Counting The aim is to determine the volume and variation of traffic movements on road sections in a certain time unit. Road Inventory: The aim is to determine the cross-sectional elements of the road, the condition of the roads in the study area, and the equipment facilities. Floating Traffic Volume (Moving Car Observer): The aim is to determine travel time and travel speed, as well as travel delays on a road section, Public Transportation Sector Public Transport Inventory Survey (Public Inventory Survey), The aim is to collect, compile and understand existing transportation data in the study area, Dynamic Survey (Dynamic Survey) The purpose is: To determine the load factor, number of passengers, travel time and speed of each section of each public transport route, to determine the origin and destination of passengers as well as the level of modal movement of public transport passengers. Static Survey (Static Survey) The aim is to determine the frequency, load factor, level of operation, number of fleets according to permits, and number of fleets operating on each route, Traffic Safety Sector, Road Inventory Survey The aim is to determine the geometry of the road and the available road facilities, Road Section Speed Survey, The goal is to find out the average speed on the road section, Traffic Volume Survey, The aim is to find out the average number of vehicles that use the road.

The data analysis method in this research uses a quantitative descriptive method, according to (Sugiyono, 2023) quantitative descriptive analysis technique is data analysis by describing or describing the data that has been collected as it is without the intention of making conclusions that apply to the general public, descriptive statistics functions to describe or provide an overview of the object being studied through sample or population data.

RESULTS AND DISCUSSION

Before the author analyzes the problem, it is necessary to explain the location of the study area. Gorontalo City is the capital of Gorontalo Province. Geographically, it has an area of 64.24 km2 or 0.53 percent of the area of Gorontalo Province. Gorontalo City is divided into 9 sub-districts, consisting of 50 sub-districts. The sub-district with the largest area is Kota Barat sub-district. Astronomically, Gorontalo City is located between $00^{\circ} 28' 17'' - 00^{\circ} 35' 56''$ North Latitude and between $122^{\circ} 59' 44'' - 123^{\circ} 05' 59''$ East Longitude.

Based on its geographical position, Gorontalo City has boundaries: North – Tapa District, Bone Bolango Regency, South – Tomini Bay, West – Telaga and Batudaa District, Gorontalo Regency, East – Kabila District, Bone Bolango Regency.

The topographic condition of Gorontalo City is flat land which passes through three rivers which flow into Tomini Bay, Gorontalo Harbor. The southern part is flanked by two limestone/sand rocky mountains. The height above sea level is between 0 and 470 meters. The coastline is sandy.

Figure 1. Gorontalo City Maps

Figure 2. Route Map for Public Transport Network Planning in Gorontalo City

The BRT route analysis in the city of Gorontalo considers the traffic conditions (volume) of the road sections. Traffic volume is classified into 3 (three) scale quantities, namely small traffic volume, medium traffic volume and high traffic volume.

Table 1. Traffic Volume Scale Table							
No	Scale	Traffic Volume	Public Transport Plan				
1	Small Scale	200 - 1180	City transport (kap. 12 pnp)				
2	Medium Scale	1181 - 2100	Small bus (kap. 20)				
3	High Scale	2201 - 23000	Medium bus (kap. 30 pnp)				
	n	\mathbf{D}^{\prime} $(\mathbf{C} + \mathbf{C})$	ΥТ 1 / T · · · · ·				

Source: Directorate General of Land Transportation

Table below shows road sections with high traffic volume classification. BRT corridors will pass through roads with high traffic volumes.

	Table 2. of Road Traffic Volume in Gorontalo City Year									
No	Road Section Name	Traffic Volume	Amount							
1	Prof. Dr. H.B. Jassin	2182								
2	Prof. Dr. H.B. Jassin	1151								
3	Prof. Dr. H.B. Jassin	1927								
4	Prof. Dr. H.B. Jassin	1961								
5	Prof. Dr. H.B. Jassin	1762								
6	Prof. Dr. H.B. Jassin	939								
7	Prof. Dr. H.B. Jassin	2554								
8	Prof. Dr. H.B. Jassin	2171								
9	Prof. Dr. H.B. Jassin	2275	16921							
10	H. Nani Wartabone	1067								
11	H. Nani Wartabone	911								
12	H. Nani Wartabone	2117								
13	H. Nani Wartabone	104								
14	H. Nani Wartabone	206								
15	H. Nani Wartabone	216	4621							
16	Prof. Dr. John Kartili	1882								
17	Prof. Dr. John Kartili	1297								
18	Prof. Dr. John Kartili	447	3625							
19	By Pass	1181	1181							
20	Rajawali	1864	1864							
21	Prof. Cokroaminoto	61								
22	Prof. Cokroaminoto	964								
23	Prof. Cokroaminoto	206	1231							
24	Imam Bonjol	481	481							
25	Diponegoro	1252	1252							
26	M. Yamin	902	1734							
27	Beringin	45								
28	Beringin	994								
29	Beringin	46	1086							
30	Sam Ratulangi	212	1240							

No	Road Section Name	Traffic Volume	Amount
31	Sam Ratulangi	486	
32	Sam Ratulangi	542	
33	Budi Utomo	901	901
34	Patimura	111	
35	Patimura	206	317
36	Jamaludin Malik	470	
37	Jamaludin Malik	245	
38	Jamaludin Malik	372	1087
39	Ki Hajar Dewantoro	1182	1182
40	Sudirman	693	
41	Sudirman	809	
42	Sudirman	507	
43	Sudirman	817	
44	Sudirman	676	3502
45	Palma	45	
46	Palma	1345	
47	Palma	1151	2541
48	Pangeran Hidayat	606	606
49	Morotai	1558	1558
50	Rusli Datau	127	2163
51	Jaksa Agung	527	
52	Jaksa Agung	527	1055
53	Arif Rahman Hakim	1609	1609
54	Yusuf Hasiro	1495	1495
55	Sapta Marga	2784	3104
56	Kantor Gubernur	2697	2697
57	23 Januari	1119	
58	23 Januari	156	1275
59	Jendral Katamso	1127	
60	Jendral Katamso	1413	2540
61	Sutoyo	3825	
62	Sutoyo	2583	6408
63	S. Parman	146	
64	S. Parman	386	532
65	Soeprapto	216	216
66	MT. Haryono	216	
67	MT. Haryono	174	390
68	Raden Saleh	1179	1179
69	Madura	657	657
70	Raja Eyato	1333	
71	Raja Eyato	2837	
72	Raja Eyato	3181	
73	Raja Eyato	3209	
74	Raja Eyato	2257	
75	Raja Eyato	4903	
76	Raia Evato	1949	22802

No	Road Section Name	Traffic Volume	Amount
77	Raja Eyato	3133	
78	Sultan Botutihe	3302	
79	Sultan Botutihe	3173	
80	Sultan Botutihe	2153	
81	Sultan Botutihe	831	9458
82	Taman Pendidikan	1783	1783
83	Beringin	2426	2426
84	Thayib M. Gobel	797	797
85	Bambu	1476	
86	Bambu	994	
87	Bambu	2202	4673
88	Surapati - Iloponu	1443	1443
89	Barito	969	
90	Barito	1350	2319
91	Laksamana Martadinata	994	994
92	Mayor Dullah	129	
93	Mayor Dullah	846	
94	Mayor Dullah	589	1564
95	Delima	1280	1280
96	Tondano	850	850

Source: Directorate General of Land Transportation

Corridor I Analysis to determine the number of fleet requirements based on the average number of passengers. The following are the results of calculating the estimated number of passengers for each corridor in the 30-seat medium bus transportation mode.

Determination of Cycle Time and Number of Corridor I Fleet, Corridor 1 passes through several traffic zones in the Gorontalo City area. Movement originating from these zones is input from the total movement requirements for Corridor 1. Passenger pockets for corridor 1 are located in zones 1, 2, 5, 6, 10, 15, 17, 18, and 19.

Table 3. Matrix of Origin and Destination Trips for Public Transport Users for Corridor I Plan

O/D	1	2	5	6	10	15	17	18	19	Aj
1	0	380	462	217	347	288	357	420	333	2804
2	647	0	435	191	340	281	355	409	323	2980
5	552	295	0	213	377	262	327	381	301	2708
6	404	195	321	0	263	210	243	277	223	2136
10	484	280	458	212	0	304	286	327	406	2758
15	604	325	447	237	427	0	351	391	447	3229
17	536	308	420	207	302	264	0	585	442	3065
18	562	355	489	236	346	294	584	0	521	3387
19	483	279	384	188	427	334	439	518	0	3052
Tu	4272	2418	3415	1701	2830	2237	2943	3307	2997	26119

Source: Directorate General of Land Transportation

Determination of Cycle Time and Corridor Fleet Number. The corridor 2 passenger pocket area includes traffic zones 1, 2, 4, 5, 9, 14, 17 and 18.

O/D	1	2	4	5	9	14	17	18	Aj
1	0	380	374	462	317	299	357	420	2610
2	647	0	349	435	306	291	355	409	2789
4	502	281	0	430	387	337	407	466	2811
5	552	295	362	0	289	271	327	381	2478
9	378	217	341	303	0	175	276	316	2005
14	512	296	426	407	252	0	470	505	2867
17	536	308	440	420	339	402	0	585	3030
18	562	355	503	489	387	432	584	0	3312
Tu	3688	2132	2794	2946	2278	2207	2777	3081	21902

Table 4.	Travel	Destination	Matrix fo	or Public	Transport	Users	Corridor	II Plan

Source: Directorate General of Land Transportation

Determination of Cycle Time and Fleet Number for Corridor III. The catchment area for corridor 3 is not as large as corridors 1 and 2. Passenger pockets for corridor 3 are located in traffic zones 7, 8, 13, 16, 17 and 18.

Table 5. Matrix Table of Origin and Destination Trips for Public Transport Users Corridor III Plan

O/D	7	8	13	16	17	18	Aj
7	0	285	202	202	232	278	1200
8	462	0	403	407	499	519	2291
13	319	393	0	342	386	383	1823
16	311	387	334	0	456	472	1959
17	383	509	405	490	0	585	2371
18	460	529	401	507	584	0	2481
Tu	1935	2103	1745	1947	2157	2238	12125

Source: Directorate General of Land Transportation

Determination of Cycle Time and Fleet Number Corridor IV, corridor 4 catchment area covers the Gorontalo city area with parts of zones 6, 7, 9, 10, 11, 12, 17, 18 and 19

		U					1			
O/D	6	7	9	10	11	12	17	18	19	Aj
6	0	312	213	263	334	287	243	277	223	2153
7	161	0	205	236	363	344	232	278	220	2040
9	148	276	0	362	260	226	276	316	329	2193
10	212	369	421	0	346	299	286	327	406	2666
11	247	520	276	317	0	471	324	353	311	2820
12	235	548	267	306	523	0	269	369	292	2810
17	207	383	339	302	374	279	0	585	442	2911
18	236	460	387	346	407	383	584	0	521	3324
19	188	361	401	427	356	301	439	518	0	2990
Tu	1634	3229	2510	2560	2962	2591	2654	3023	2744	23908

Table 6. Matrix of Origin of Travel Destinations for Public Transport Users Corridor IV Plan

Source: Directorate General of Land Transportation

CONCLUSION

- There are 4 routes needed to serve the people of Gorontalo City, namely: (1) Corridor 1 Jl. Sultan Botutihe – Jl. Bambu (PP) Route Length 20.2 KM. (2) Corridor 2 Along Jl. Prof. Dr. HB. Jassin (PP) Route Length 9.3 KM. (3) Corridor 3 Jl. Education Park – Jl.Prof. Dr. Jhon Katili (PP) Route length 16 KM. (4) Corridor 4 Jl. By Pass – Jl. Beringin (PP) Route Length 40 KM.
- The daily need for vehicles to serve these corridors and routes is that Corridor 1 requires 9 units, and Corridor 2 requires 5 units, and Corridor 3 also requires 5 units, while Corridor 4 requires 11 units.

- 3. Service levels in each corridor are as follows: (1) Corridor I can be reached in 52.9 minutes (PP) at a speed of 40 km/hour, has a vehicle headway every 6 minutes, and a total frequency of 11 vehicles/hour. (2) Corridor II can be reached in 26.5 minutes (PP) at a speed of 40 km/hour, has a vehicle headway every 6 minutes, and a total frequency of 11 vehicles/hour. (3) Corridor III can be reached in 27.6 minutes (PP) at a speed of 40 km/hour, has a vehicle headway every 8 minutes, and a total frequency of 8 vehicles/hour. (4) Corridor IV can be reached in 74.8 minutes (PP) at a speed of 40 km/hour, has a vehicle headway every 6 minutes, and a total frequency of 11 vehicles/hour.
- 4. Based on the conclusions, it can be recommended that the City of Gorontalo can develop and organize Bus Rapid Transit in Public Transport Planning based on the results of this research, then the City of Gorontalo should also be able to integrate payments into the public transport system to be affordable so that people of all groups can travel using transport. In general, it is best to use a flat rate with affordable costs.
- 5. Public transport subsidies should be prioritized to support the above recommendations and strengthening human resources in the transportation sector must be applied to support the above recommendations.

REFERENCE

- Departemen Perhubungan RI Direktorat Jenderal Perhubungan Darat. (2002). Pedoman Teknis Penyelenggaraan Angkutan Penumpang Umum di Wilayah Perkotaan dan Trayek Tetap dan Teratur, Jakarta.
- Direktorat Jenderal Perhubungan Darat. (2002). *Panduan Pengumpulan Data Angkutan Umum Perkotaan*. Jakarta.
- Keputusan Dirjen Perhubungan Darat Nomor SK.687/AJ.206/DRJD/2002tentang Pedoman Teknis Penyelenggaraan Angkutan Umum Di Wilayah Perkotaan Dalam Trayek Tetap dan Teratur.
- Morlok, E. K. (1985). Pengantar Teknik dan Perencanaan Transportasi. Jakarta: Erlangga.
- Munawar, A. (2005). Dasar-Dasar Teknik Transportasi. Yogyakarta: Beta Offset.
- Nasution, H.M. (2003). Manajemen Transportasi. Jakarta: Ghalia.
- Novirani, D. (2007). Kajian Tarif Shuttle service Terhadap Vihicle Operation Cost Operator, Ability To Pay(ATP) Dan Willingness To Pay(WTP) Penumpang. *Thesis S*₂ *Fakultas Teknik ITB, Bandung*.
- Sugiyono. (2018). Metode Penelitian Kuantitatif. Bandung: Alfabeta.
- Sugiyono. (2023). Statistika Untuk Penelitian. Bandung: Alfabeta.
- Sukandarrumidi. (2002). *Metodologi Penelitian: Petunjuk Praktis Peneliti Pemula*. Yogyakarta: Fakultas Teknik, Unversitas Gajah Mada, Gadjah mada University Press.
- Susanto, P. C., Arini, D. U., Yuntina, L., & Panatap, J. (2024). Konsep Penelitian Kuantitatif: Populasi, Sampel, dan Analisis Data (Sebuah Tinjauan Pustaka). Jurnal Ilmu Manajemen, 3(1), 1–12. https://doi.org/https://doi.org/10.38035/jim.v3i1
- Suwardi. (2000). Angkutan Umum. Surakarta: Fakultas Teknik UMS.
- Warpani S. (1990). Merencanakan Sistem Perangkutan. Bandung.: ITB.
- Wells, G.R. (1975). *Comprhensive Transport planning*. London: Charles Griffin and Company Ltd.
- White, Peter. (1995). *Public Transport: Its Planning, Managementand Operation*, Third Edition. London: UCL Press.
- Wijaya, C. (2009). Makalah Perencanaan Angkutan Umum. Depok: Sipil UI
- World Bank. (1986). The International World Bank ForReconstruction and Development USA.
- www.google.com, Standard Pelayanan Angkutan Umum